The Nature of Hydrogen Bonding Involving the Siloxane Group
Simon Grabowsky A B D , Jens Beckmann A C and Peter Luger AA Freie Universität Berlin, Institut für Chemie und Biochemie/Anorganische Chemie, 14195 Berlin, Germany.
B Current address: The University of Western Australia, School of Chemistry and Biochemistry, M313, Crawley WA 6009, Australia.
C Current address: Universität Bremen, Institut für Anorganische und Physikalische Chemie, 28359 Bremen, Germany.
D Corresponding author. Email: simon.grabowsky@uwa.edu.au
Australian Journal of Chemistry 65(7) 785-795 https://doi.org/10.1071/CH11468
Submitted: 9 December 2011 Accepted: 6 February 2012 Published: 27 April 2012
Abstract
Variation of the Si–O–Si angle in siloxane compounds is a way to tune their basicity from highly hydrophobic systems at linear geometry to hydrophilic systems at small angles. This has great potential in the design of new siloxane materials with properties distinct from those of known silicones. We investigate hydrogen bonds with the siloxane linkage as an acceptor in a large range of Si–O–Si angles for the two hydrogen-bonded complexes disiloxane⋯silanol [(H3Si)2O⋯HOSiH3] and disiloxane⋯water [(H3Si)2O⋯HOH] with free disiloxane [H3SiOSiH3] as reference in a quantum-mechanical ab-initio study. Geometry, electron density, and the electron localizability indicator provide several complementary indicators of hydrogen bonding which show how Si–O–Si angle variation affects the nature and strength of these unusual hydrogen bonds.
References
[1] Cambridge Structural Database version 5.32 (November 2010). Geometric criteria for the search were: distance hydrogen⋯acceptor < sum of van der Waals radii, distance N/O⋯acceptor < 3.2 Å, angle N/O–H⋯acceptor > 130°. These criteria were chosen according to G. A. Jeffrey, An Introduction to Hydrogen Bonding 1997 (Oxford University Press: Oxford).[2] (a) W. Noll, Chemistry and Technology of the Silicones 1969 (Academic Press: New York, NY).
(b) S. J. Clarson, J. A. Semlyen, Siloxane Polymers 1993 (Prentice Hall: Englewood Cliffs).
(c) I. Manners, Angew. Chem. Int. Ed. 1996, 35, 1602.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) R. K. Iler, The Chemistry of Silica 1976 (Wiley-VCH: New York, NY).
(b) G. J. Beall, in SILICA. Reviews in Mineralogy 1994, p. 606 (Eds P. J. Heaney, C. T. Prewitt, G. V. Gibbs) (American Mineralogist: Washington, DC).
[4] R. West, L. S. Wilson, D. L. Powell, J. Organomet. Chem. 1979, 178, 5.
| Crossref | GoogleScholarGoogle Scholar |
[5] G. V. Gibbs, D. F. Cox, M. B. Boisen, R. T. Downs, N. L. Ross, Phys. Chem. Miner. 2003, 30, 305.
| Crossref | GoogleScholarGoogle Scholar |
[6] S. Grabowsky, M. F. Hesse, C. Paulmann, P. Luger, J. Beckmann, Inorg. Chem. 2009, 48, 4384.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) V. E. Shklover, H.-B. Bürgi, A. Raselli, T. Armbruster, W. Hummel, Acta Crystallogr. B 1991, 47, 544.
| Crossref | GoogleScholarGoogle Scholar |
(b) I. L. Karle, J. M. Karle, C. J. Nielsen, Acta Crystallogr. C 1986, 42, 64.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) J. Beckmann, M. Hesse, Z. Anorg. Allg. Chem. 2007, 633, 1233.
| Crossref | GoogleScholarGoogle Scholar |
(b) (R8b) S. Grabowsky, Doctoral Thesis, 2010 (Freie Universität Berlin: Berlin), available at http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000015999.
(c) W. Fink, Helv. Chim. Acta 1974, 57, 1010.Syntheses for unpublished compounds are based on:
| Crossref | GoogleScholarGoogle Scholar |
[9] C. von Hänisch, O. Hampe, F. Weigend, S. Stahl, Angew. Chem. Int. Ed. 2007, 46, 4775.
| Crossref | GoogleScholarGoogle Scholar |
[10] R. West, L. S. Whatley, K. J. Lake, J. Am. Chem. Soc. 1961, 83, 761.
| Crossref | GoogleScholarGoogle Scholar |
[11] Y. L Frolov, M. G. Voronkov, N. V. Strashnikova, N. I. Shergina, J. Mol. Struct. 1992, 270, 205.
| Crossref | GoogleScholarGoogle Scholar |
[12] J. B. Nicholas, R. E. Winans, R. J. Harrison, L. E. Iton, L. A. Curtiss, A. J. Hopfinger, J. Phys. Chem. 1992, 96, 7958.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) M. D. Jackson, G. V. Gibbs, J. Phys. Chem. 1988, 92, 540.
| Crossref | GoogleScholarGoogle Scholar |
(b) G. V. Gibbs, K. M. Rosso, D. M. Teter, M. B. Boisen, M. S. T. Bukowinski, J. Mol. Struct. 1999, 485–486, 13.
| Crossref | GoogleScholarGoogle Scholar |
[14] S. Grabowsky, M. Weber, D. Jayatilaka, Y.-S. Chen, M. T. Grabowski, R. Brehme, M. Hesse, T. Schirmeister, P. Luger, J. Phys. Chem. A 2011, 115, 12715.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) G. V. Gibbs, D. F. Cox, T. D. Crawford, M. B. Boisen, M. Lim, Phys. Chem. Miner. 2002, 29, 307.
| Crossref | GoogleScholarGoogle Scholar |
(b) G. V. Gibbs, D. F. Cox, N. L. Ross, Phys. Chem. Miner. 2004, 31, 232.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. V. Gibbs, D. F. Cox, N. L. Ross, T. D. Crawford, R. T. Downs, J. B. Burt, J. Phys. Chem. A 2005, 109, 10022.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) R. F. W. Bader, Atoms in Molecules: A Quantum Theory 1990, 1st edition, No. 22 in The International Series of Monographs on Chemistry (Clarendon Press: Oxford).
(b) R. F. W. Bader, Chem. Rev. 1991, 91, 893.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. F. W. Bader, P. L. A. Popelier, T. A. Keith, Angew. Chem. Int. Ed. 1994, 33, 620.
| Crossref | GoogleScholarGoogle Scholar |
[17] (a) M. Kohout, Int. J. Quantum Chem. 2004, 97, 651.
| Crossref | GoogleScholarGoogle Scholar |
(b) M. Kohout, Faraday Discuss. 2006, 135, 43.
| Crossref | GoogleScholarGoogle Scholar |
[18] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Cliord, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision E.01 2004 (Gaussian, Inc.: Wallington CT).
[19] S. M. Bachrach, J. M. Hayes, T. Dao, J. L. Mynar, Theor. Chem. Acc. 2002, 107, 266.
| Crossref | GoogleScholarGoogle Scholar |
[20] S. F. Boys, F. Bernardi, Mol. Phys. 1970, 19, 553.
| Crossref | GoogleScholarGoogle Scholar |
[21] F. Biegler-König, J. Schönbohm, D. Bayles, J. Comput. Chem. 2001, 22, 545.
| Crossref | GoogleScholarGoogle Scholar |
[22] (a) R. F. W. Bader, M. E. Stephens, J. Am. Chem. Soc. 1975, 97, 7391.
| Crossref | GoogleScholarGoogle Scholar |
(b) R. F. W. Bader, A. Streitwieser, A. Neuhaus, K. E. Laidig, P. Speers, J. Am. Chem. Soc. 1996, 118, 4959.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. Macchi, A. Sironi, Coord. Chem. Rev. 2003, 238–239, 383.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. L. Firme, O. A. C. Antunes, P. M. Esteves, Chem. Phys. Lett. 2009, 468, 129.
| Crossref | GoogleScholarGoogle Scholar |
[23] M. Kohout, F. R. Wagner, Y. Grin, Theor. Chem. Acc. 2008, 119, 413.
| Crossref | GoogleScholarGoogle Scholar |
[24] M. Kohout, DGrid, version 4.4 2008 (Radebeul).
[25] C. B. Hübschle, P. Luger, J. Appl. Crystallogr. 2006, 39, 901.
| Crossref | GoogleScholarGoogle Scholar |
[26] S. Gerlach, LabPlot – An Application for Plotting and Analysis of 2d and 3d Functions and Data 2007.
[27] M. J. Barrow, E. A. V. Ebsworth, M. M. Harding, Acta Crystallogr. B 1979, 35, 2093.
| Crossref | GoogleScholarGoogle Scholar |
[28] Y. Kabe, K. Ohkubo, H. Ishikawa, W. Ando, J. Am. Chem. Soc. 2000, 122, 3775.
| Crossref | GoogleScholarGoogle Scholar |
[29] J. Beckmann, S. Grabowsky, J. Phys. Chem. A 2007, 111, 2011.
| Crossref | GoogleScholarGoogle Scholar |
[30] A. E. Reed, L. A. Curtiss, F Weinhold, Chem. Rev. 1988, 88, 899.
| Crossref | GoogleScholarGoogle Scholar |
[31] (a) H. Oberhammer, J. E. Boggs, J. Am. Chem. Soc. 1980, 102, 7241.
| Crossref | GoogleScholarGoogle Scholar |
(b) R. J. Gillespie, S. A. Johnson, Inorg. Chem. 1997, 36, 3031.
| Crossref | GoogleScholarGoogle Scholar |
[32] A. E. Reed, P. von Rague Schleyer, J. Am. Chem. Soc. 1990, 112, 1434.
| Crossref | GoogleScholarGoogle Scholar |
[33] (a) F. Weinhold, R. West, Organometallics 2011, 30, 5815.
| Crossref | GoogleScholarGoogle Scholar |
(b) S. Shambayati, J. F. Blake, S. G. Wierschke, W. L. Jorgensen, S. L. Schreiber, J. Am. Chem. Soc. 1990, 112, 697.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. T. Luke, J. A. Pople, B. Krogh-Jesperson, Y. Apeloig, J. Chandrasekahar, P. von Rague Schleyer, J. Am. Chem. Soc. 1986, 108, 260.
| Crossref | GoogleScholarGoogle Scholar |
[34] T.-H. Tang, E. Deretey, S. J. K. Jensen, I. G. Csizmadia, Eur. Phys. J. D 2006, 37, 217.
| Crossref | GoogleScholarGoogle Scholar |
[35] U. Koch, P. L. A. Popelier, J. Phys. Chem. 1995, 99, 9747.
| Crossref | GoogleScholarGoogle Scholar |
[36] A. Savin, R. Nesper, S. Wengert, T. F. Fässler, Angew. Chem. Int. Edit. 1997, 36, 1808.
| Crossref | GoogleScholarGoogle Scholar |