The First Carbonyl-Substituted Derivative of [Mn2(CO)6(μ-pyS)2]
Md. Saifur Rahman A , Jagodish C. Sarker A , Shishir Ghosh A and Shariff E. Kabir A BA Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh.
B Corresponding author. Email: skabir_ju@yahoo.com
Australian Journal of Chemistry 65(7) 796-801 https://doi.org/10.1071/CH12021
Submitted: 18 January 2012 Accepted: 7 February 2012 Published: 19 March 2012
Abstract
Reaction of [Mn2(CO)6(μ-pyS)2] (1) with (Ph3P)2Ni(CO)2 at room temperature affords [Mn2(CO)5(PPh3)(μ-pyS)2] (3) which is the first carbonyl-substituted derivative of 1. A mononuclear complex fac-[Mn(CO)3(PPh3)(κ2-pyS)] (4) is also isolated as a minor product in this reaction. The formation of 3 allows us to propose a different mechanism operating in this reaction. A similar reaction between [Re2(CO)6(μ-pyS)2] (2) and (Ph3P)2Ni(CO)2 gives only mononuclear fac-[Re(CO)3(PPh3)(κ2-pyS)] (5). Both 4 and 5 undergo CO substitution to produce [M(CO)2(PPh3)2(κ2-pyS)] (6, M = Mn; 7, M = Re) when treated with (Ph3P)2Ni(CO)2 in boiling THF. Complex 3 also reacts with further (Ph3P)2Ni(CO)2 at room temperature to give 4 and 6. The molecular structures of 3 and 4 have been established by single crystal X-ray diffraction analyses.
References
[1] S. Jeannin, Y. Jeannin, G. Lavigne, Inorg. Chem. 1978, 17, 2103.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXkvVeqtb4%3D&md5=026860639ddca9a6ef55a3e3c7cfd130CAS |
[2] A. M. Brodie, H. D. Holden, J. Lewis, M. J. Taylor, J. Chem. Soc., Dalton Trans. 1986, 633.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xlt1GrurY%3D&md5=88fbf563524ed332b473fe4a01d459a8CAS |
[3] A. M. Brodie, H. D. Holden, J. Lewis, M. J. Taylor, J. Organomet. Chem. 1983, 253, c1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlsFWjsLk%3D&md5=33c58861d95c3aaf9610e5ec57fc90b1CAS |
[4] S. Kitagawa, M. Munakata, H. Shimono, S. Matsuyama, H. Masuda, J. Chem. Soc., Dalton Trans. 1990, 7, 2105.
| Crossref | GoogleScholarGoogle Scholar |
[5] K. A. Azam, K. M. Hanif, A. C. Ghosh, S. E. Kabir, S. R. Karmakar, K. M. A. Malik, S. Parvin, E. Rosenberg, Polyhedron 2002, 21, 885.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVKmtL4%3D&md5=ce19fadd53ca1aa66895af0b82735d09CAS |
[6] A. J. Deeming, K. I. Hardcastle, M. N. Meah, P. A. Bates, H. M. Dawes, M. B. Hursthouse, J. Chem. Soc., Dalton Trans. 1988, 227.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhsVajtbk%3D&md5=2b56ac5fee4c552587860fff142eb7e2CAS |
[7] A. J. Deeming, M. Karim, M. Powell, J. Chem. Soc., Dalton Trans. 1990, 2321.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmt1ensr4%3D&md5=ed4874d681b8366c4c2f2299d679330aCAS |
[8] S. G. Rosenfield, H. P. Berends, L. Gelmini, D. W. Stephan, P. K. Mascharak, Inorg. Chem. 1987, 26, 2792.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXltVyisrY%3D&md5=cd0781a182eea7b9b4e169d869939eebCAS |
[9] A. J. Deeming, M. Karim, P. A. Bates, M. B. Hursthouse, Polyhedron 1988, 7, 1401.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXoslehtw%3D%3D&md5=68fd0fa3b6950e2d55ed3c568ed139bdCAS |
[10] S. E. Kabir, M. M. Karim, K. Kundu, S. M. B. Ullah, K. I. Hardcastle, J. Organomet. Chem. 1996, 517, 155.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtlWjtr0%3D&md5=c787829cd59f47e621e51caf55ed3e80CAS |
[11] S. Ghosh, S. E. Kabir, M. Khatun, D. T. Haworth, S. V. Lindeman, T. A. Siddiquee, D. W. Bennett, J. Chem. Crystallogr. 2009, 39, 632.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovV2qtr8%3D&md5=be7fb35508cdee0c4266876caea4d1f8CAS |
[12] L. M. T. Canzoniero, P. Manzerra, C. T. Sheline, D. W. Choi, Neuropharmacology 2003, 45, 420.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsVWksrc%3D&md5=396ff59d8762398822718c688136a96aCAS |
[13] J. R. Hwu, K. L. Lu, S. F. Yu, L. J. Yu, S. Kumaresan, K. J. Lin, S. C. Tsay, Photochem. Photobiol. 2002, 75, 457.
| 1:CAS:528:DC%2BD38Xjs1Wgtr4%3D&md5=231334f2fe638b158389efdd9f24ddb7CAS |
[14] A. K. Sijpesteijn, M. J. Janssen, Nature 1958, 182, 1313.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1MXkslaktA%3D%3D&md5=19ea1b1eec0f5c213929b7acd14e2ee2CAS |
[15] D. Katiyar, V. K. Tiwari, R. P. Tripathi, A. Srivastava, V. Chaturvedi, R. Srivastava, B. S. Srivastava, Bioorg. Med. Chem. 2003, 11, 4369.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1yisro%3D&md5=fa04fcf941d6f61020b2329532befe39CAS |
[16] K. H. Scheit, E. Gartner, Biochim. Biophys. Acta 1969, 182, 10.
| 1:CAS:528:DyaF1MXkt1Ogu7o%3D&md5=610d9c78f2ea27274dfd5b8de3991e37CAS |
[17] M. Berardini, J. Brennan, Inorg. Chem. 1995, 34, 6179.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXptVeisrY%3D&md5=698bcc3a68495549cb10a7a58c4635dcCAS |
[18] M. Islam, C. A. Johns, S. E. Kabir, K. Kundu, K. M. A. Malik, S. M. B. Ullah, J. Chem. Crystallogr. 1999, 29, 1001.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXislOhsbc%3D&md5=fcbc46148c6d41fff0d9bf007cc8f5ebCAS |
[19] M. Islam, S. E. Kabir, K. Kundu, K. M. A. Malik, S. M. B. Ullah, J. Chem. Crystallogr. 2000, 30, 379.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivFOqtr8%3D&md5=412f8a71c7b007ca325d6248ae254bf9CAS |
[20] G. Ara, S. E. Kabir, K. Kundu, K. M. A. Malik, J. Chem. Crystallogr. 2003, 33, 851.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitlWhtA%3D%3D&md5=a5ae4efb92bfd2bbb5a65c89ac1c7271CAS |
[21] S. E. Kabir, J. Alam, S. Ghosh, K. Kundu, G. Hogarth, D. A. Tocher, G. M. G. Hossain, H. W. Roesky, Dalton Trans. 2009, 4458.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1Oitbw%3D&md5=2715f61babf92b9ebe16c12f35fe85eaCAS |
[22] S. Ghosh, S. E. Kabir, S. Pervin, G. M. G. Hossain, D. T. Haworth, S. V. Lindeman, T. A. Siddiquee, D. W. Bennett, H. W. Roesky, Z. Anorg. Allg. Chem. 2009, 635, 76.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVeku7w%3D&md5=65607d9c9e5b62a78374a54404a09516CAS |
[23] S. Ghosh, S. E. Kabir, S. Pervin, A. K. Raha, G. M. G. Hossain, D. T. Haworth, S. V. Lindeman, D. W. Bennett, T. A. Siddiquee, L. Salassa, H. W. Roesky, Dalton Trans. 2009, 3510.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslynurk%3D&md5=dd82996914a81810a7fc74b2faf6c714CAS |
[24] S. Ghosh, K. N. Khanam, G. M. G. Hossain, D. T. Haworth, S. V. Lindeman, G. Hogarth, S. E. Kabir, New J. Chem. 2010, 34, 1875.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVKrsLjL&md5=0c56d47869ea484872c85832b29bf7d3CAS |
[25] S. Ghosh, K. N. Khanam, M. K. Hossain, G. M. G. Hossain, D. T. Haworth, S. V. Lindeman, G. Hogarth, S. E. Kabir, J. Organomet. Chem. 2010, 695, 1146.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVSgs70%3D&md5=078dd8cfae800a204b91f50f808907a7CAS |
[26] S. Ghosh, F. K. Camellia, K. Fatema, M. I. Hossain, M. R. Al-Mamum, G. M. G. Hossain, G. Hogarth, S. E. Kabir, J. Organomet. Chem. 2011, 696, 2935.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVajtr0%3D&md5=92bb2d34a0983e1a115a144eece8d05bCAS |
[27] S. Ghosh, M. S. A. Mia, E. Begum, G. M. G. Hossain, S. E. Kabir, Inorg. Chim. Acta 2012, 384, 76.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtFKqt70%3D&md5=472eb55920a875cf36ba991f483784a3CAS |
[28] S. Ghosh, F. Ahmed, R. Al-Mamun, D. T. Haworth, S. V. Lindeman, T. A. Siddiquee, D. W. Bennett, S. E. Kabir, J. Chem. Crystallogr. 2009, 39, 595.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvFamsbg%3D&md5=c82a0d950a7b0f73b05fedadc01145fcCAS |
[29] A. A. Lozano, M. D. Santana, G. García, J. E. Barclay, S. C. Davies, D. J. Evans, Z. Anorg. Allg. Chem. 2005, 631, 2062.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvFWjsb0%3D&md5=bcbc9ff6a5b10bca8162f76dee2c4797CAS |
[30] R. D. Adams, B. Captain, P. J. Pellechia, Inorg. Chem. 2003, 42, 3111.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXis1eqtrY%3D&md5=28691311cbebba887f578ca80acd414dCAS |
[31] W. H. Watson, G. Wu, M. G. Richmond, Organometallics 2005, 24, 5431.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVeqtb%2FN&md5=8d442908adee5cbb1fd601dd0828872eCAS |
[32] X. Zhang, S. Kandala, L. Yang, W. H. Watson, X. Wang, D. A. Hrovat, W. T. Borden, M. G. Richmond, Organometallics 2011, 30, 1253.
| Crossref | GoogleScholarGoogle Scholar |
[33] SMART and SAINT+ Software for CCD Diffractometers, version 6.1 2000 (Bruker AXS: Madison, WI).
[34] G. M. Sheldrick, Acta Crystallogr. A 1990, 46, 467.
| Crossref | GoogleScholarGoogle Scholar |
[35] G. M. Sheldrick, SHELXL-97 Program for Crystal Structure Refinement 1997 (Göttingen University: Göttingen).