Using Quenching Kinetics and Thermodynamics of Amino-Fluorophores as Empirical Tools for Predicting Boronic Acid Sensors Suitable for Use in Physiological Conditions
Nicholas McGregor A , Christophe Pardin A B and W. G. Skene A CA Laboratoire de caractérisation photophysique des matériaux conjugués, Department of Chemistry, Pavillon JA Bombardier, Université de Montréal, CP 6128, succ. Centre-ville, Montreal, Quebec, H3C 3J6, Canada.
B Department of Chemistry, D’Iorio Hall, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada.
C Corresponding author. Email: w.skene@umontreal.ca
Australian Journal of Chemistry 64(11) 1438-1446 https://doi.org/10.1071/CH11297
Submitted: 18 July 2011 Accepted: 9 August 2011 Published: 16 November 2011
Abstract
A series of water-soluble 1-amino-naphthalenes and 2-amino-fluorenes are prepared. These serve as model fluorophores for measuring the thermodynamics and kinetics of fluorescence quenching with phenylboronic acids and aliphatic amines. Steady-state and time-resolved fluorescence quenching kinetics are investigated using the Stern–Volmer method. Diffusion limited quenching constants and exergonic thermodynamics of electron transfer are derived for the 5-amino-1-napthol and 2-aminofluorene derivatives with phenylboronic acid and/or an aliphatic imine. No quenching and endergonic thermodynamics or electron transfer are observed for 5-sulfonamide, 5-sulfonic acid, or 5-hydroxy-7-sulfonic acid aminonaphthalene derivatives. Boronic acid sensors synthesized from these aminofluorophores by reductive amination with 2-formylphenylboronic acid undergo fluorescence revival in the presence of saccharides only when the fluorophore demonstrates diffusion limited quenching kinetics and exergonic thermodynamics of electron transfer with the boronic acid or imine quenchers. Thus, these two properties are suitable empirical tools for predicting saccharide-induced fluorescence revival of boronic acid sensors.
References
[1] C. R. Wade, A. E. J. Broomsgrove, S. Aldridge, F. O. P. Gabbaî, Chem. Rev. 2010, 110, 3958.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntlWqs78%3D&md5=5dfc69c0818212e2d27df61f2cf68c1bCAS |
[2] S. Jin, Y. Cheng, S. Reid, M. Li, B. Wang, Med. Res. Rev. 2010, 30, 171.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktlSku7k%3D&md5=b2a04de7c78eceba938794611c836e0cCAS |
[3] C. D. Geddes, J. R. Lakowicz, J. S. Fossey, T. D. James, in Reviews in Fluorescence 2007 2009, p. 103 (Ed. C. D. Geddes) (Springer: New York, NY).
[4] R. W. Sinkeldam, N. J. Greco, Y. Tor, Chem. Rev. 2010, 110, 2579.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivVais7s%3D&md5=ca888afa2abf96921e527914bdc90ce9CAS |
[5] J. Yoon, A. W. Czarnik, J. Am. Chem. Soc. 1992, 114, 5874.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XksV2jtr8%3D&md5=287c00cf5a0582bdfe224c3bc3b0452bCAS |
[6] Y. Zou, D. L. Broughton, K. L. Bicker, P. R. Thompson, J. J. Lavigne, ChemBioChem 2007, 8, 2048.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsValu7zJ&md5=e9279c8b477ea69551fa315a33784f85CAS |
[7] D. Luvino, D. Gasparutto, S. Reynaud, M. Smietana, J.-J. Vasseur, Tetrahedron Lett. 2008, 49, 6075.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVyis7%2FM&md5=7350e834e0d85a7db4837f19d88a7c9cCAS |
[8] T. Zhang, E. V. Anslyn, Org. Lett. 2007, 9, 1627.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsV2lsbo%3D&md5=376671a342cef3ab5ac0afbb543a6f28CAS |
[9] E. A. Moschou, B. V. Sharma, S. K. Deo, S. Daunert, J. Fluoresc. 2004, 14, 535.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFOmsb4%3D&md5=1750525a9e6c3575005883ec874413efCAS |
[10] G. J. Worsley, G. A. Tourniaire, K. E. S. Medlock, F. K. Sartain, H. E. Harmer, M. Thatcher, A. M. Horgan, J Pritchard, Clin. Chem. 2007, 53, 1820.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKnurfL&md5=319f067947f211a2a13ebb4edee9051dCAS |
[11] D. B. Cordes, J. T. Suri, F. E. Cappuccio, J. N. Camara, S. Gamsey, Z. Sharrett, P. Thoniyot, R. A. Wessling, B. Singaram, in Glucose Sensing 2006, p. 47 (Eds C. D. Geddes, J. R. Lakowicz) (Springer: New York, NY).
[12] J. C. Pickup, F. Hussain, N. D. Evans, O. J. Rolinski, D. J. S. Birch, Biosens. Bioelectron. 2005, 20, 2555.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjs1KntL0%3D&md5=f2cd4a25d9da9f95791a5b9de47ea430CAS |
[13] H. Fang, G. Kaur, B. Wang, J. Fluoresc. 2004, 14, 481.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFOmsbg%3D&md5=3b5bfc5424362559336cfc5788754b7dCAS |
[14] R. Badugu, J. R. Lakowicz, C. D. Geddes, J. Fluoresc. 2004, 14, 617.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFOmsLw%3D&md5=bcf9bb6ad81fc581489a111766baa652CAS |
[15] T. James, S. Shinkai, in Host-Guest Chemistry – Mimetic Approaches to Study Carbohydrate Recognition 2002, Volume 215, p. 159 (Ed. S. Penadés) (Springer: New York, NY).
[16] T. D. James, K. R. A. S. Sandanayake, S. Shinkai, Chem. Commun. 1994, 477.,
| Crossref | GoogleScholarGoogle Scholar |
[17] W. Ni, G. Kaur, G. Springsteen, B. Wang, S. Franzen, Bioorg. Chem. 2004, 32, 571.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsVOltLc%3D&md5=a1a7440446f48e55379d70e1630fff4dCAS |
[18] T. James, in Creative Chemical Sensor Systems 2007, Volume 277, p. 107 (Ed. T. Schrader) (Springer: Berlin).
[19] H. Cao, M. D. Heagy, J. Fluoresc. 2004, 14, 569.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFOmsLc%3D&md5=ce5cf44db978b7846cef8949cd576d6eCAS |
[20] S. L. Wiskur, J. J. Lavigne, H. Ait-Haddou, V. Lynch, Y. H. Chiu, J. W. Canary, E. V Anslyn, Org. Lett. 2001, 3, 1311.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisVOrs7w%3D&md5=1a7a7651e1ba9e418897133f7dc80300CAS |
[21] H. S. Mader, O. S. Wolfbeis, Microchim. Acta 2008, 162, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvFeisbs%3D&md5=74ce9e74a7ac815536cc9bd7e757423bCAS |
[22] J. Wang, S. Jin, B. Wang, Tetrahedron Lett. 2005, 46, 7003.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvVSnu7o%3D&md5=532662c4375bcb0418b1159c3e6b4bd8CAS |
[23] H. Cao, M. D. Heagy, J. Fluoresc. 2004, 14, 569.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFOmsLc%3D&md5=ce5cf44db978b7846cef8949cd576d6eCAS |
[24] Z. Cao, P. Nandhikonda, M. D. Heagy, J. Org. Chem. 2009, 74, 3544.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktF2hu7o%3D&md5=5be9c13a13b4cef14bcf54d94fc4aa83CAS |
[25] Y. Cheng, N. Ni, W. Yang, B. Wang, Chemistry 2010, 16, 13528.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2kurfJ&md5=f28f00cc5f4f490562901409ebeec3d6CAS |
[26] J. C. Norrild, I. Søtofte, J. Chem. Soc., Perkin Trans. 2 2002, 303.,
| Crossref | GoogleScholarGoogle Scholar |
[27] A. L. Korich, P. M. Iovine, Dalton Trans. 2010, 39, 1423.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFalsbo%3D&md5=31de94836445fc585722cc249ecd5cfcCAS |
[28] Dufresne S.Skene W. G.J. Phys. Org. Chem. 2011, in press.
[29] S. Dufresne, T. Skalski, W. G. Skene, Can. J. Chem. 2011, 89, 173.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFKju74%3D&md5=72b8058813182dba0572570ae678ee3fCAS |
[30] Y. Dong, A. a. Bolduc, N. McGregor, W. G. Skene, Org. Lett. 2011, 13, 1844.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFyis70%3D&md5=c78eee3055976bb8536a03032a7e1262CAS |
[31] S. Barik, S. Bishop, W. G. Skene, Mater. Chem. Phys. 2011, 129, 529.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntlWjtr4%3D&md5=b38636fd6b3d02f6c628ca0b3b7586dfCAS |
[32] S. Dufresne, A. Bolduc, W. G. Skene, J. Mater. Chem. 2010, 20, 4861.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslGmur8%3D&md5=8c9f89c55d667c464a9e1bf4b62eaabcCAS |
[33] A. Bolduc, S. Dufresne, W. G. Skene, J. Mater. Chem. 2010, 20, 4820.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslGmt7s%3D&md5=0f3e99f16fc05e618fa27cffd188c29aCAS |
[34] S. Barik, S. Friedland, W. G. Skene, Can. J. Chem. 2010, 88, 945.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGqs73E&md5=e94650d97258975e640c9093b735741fCAS |
[35] S. Dufresne, S. A. P. Guarìn, A. Bolduc, A. N. Bourque, W. G. Skene, Photochem. Photobiol. Sci. 2009, 8, 796.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1yitrY%3D&md5=3a4f089ec049ad923a484ea639f76478CAS |
[36] S. Dufresne, L. Callaghan, W. G. Skene, J. Phys. Chem. B 2009, 113, 15541.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlCkur3E&md5=03b10997393235bf3f3404f0c50df4aaCAS |
[37] Bourque A. N.Dufresne S.Skene W. G.J. Phys. Chem. C 2009, 113,
[38] S. Dufresne, W. G. Skene, J. Org. Chem. 2008, 73, 3859.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXks1Klsrg%3D&md5=5e38cb3731aa8206377c774d5edf1b6fCAS |
[39] D. Tsang, M. Bourgeaux, W. G. Skene, J. Photochem. Photobiol. A 2007, 192, 122.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ajsb3N&md5=c653010033f467df603828dea459f240CAS |
[40] Y. Ooyama, A. Matsugasako, K. Oka, T. Nagano, M. Sumomogi, K. Komaguchi, I. Imae, Y. Harima, Chem. Commun. 2011, 47, 4448.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFSqs70%3D&md5=43e12a21cf871f1920549e11f2b3749aCAS |
[41] A. Gilbert, J. Baggott, Essentials of Molecular Photochemistry 1991 (CRC Press: Boca Raton, FL).