Synchrotron Radiation Spectroscopic Techniques as Tools for the Medicinal Chemist: Microprobe X-Ray Fluorescence Imaging, X-Ray Absorption Spectroscopy, and Infrared Microspectroscopy
Carolyn Therese DillonCentre for Medicinal Chemistry, School of Chemistry, University of Wollongong, NSW 2522, Australia. Email: carolynd@uow.edu.au
Dr Carolyn Dillon is a senior lecturer in the School of Chemistry at the University of Wollongong. Since 1996 she has been using synchrotron radiation techniques for solving inorganic medicinal chemistry problems, at Brookhaven National Laboratory, the Advanced Photon Source, the Australian National Beamline Facility (Tsukuba) and the Australian Synchrotron. |
Australian Journal of Chemistry 65(3) 204-217 https://doi.org/10.1071/CH11287
Submitted: 13 July 2011 Accepted: 24 October 2011 Published: 12 December 2011
Abstract
This review updates the recent advances and applications of three prominent synchrotron radiation techniques, microprobe X-ray fluorescence spectroscopy/imaging, X-ray absorption spectroscopy, and infrared microspectroscopy, and highlights how these tools are useful to the medicinal chemist. A brief description of the principles of the techniques is given with emphasis on the advantages of using synchrotron radiation-based instrumentation rather than instruments using typical laboratory radiation sources. This review focuses on several recent applications of these techniques to solve inorganic medicinal chemistry problems, focusing on studies of cellular uptake, distribution, and biotransformation of established and potential therapeutic agents. The importance of using these synchrotron-based techniques to assist the development of, or validate the chemistry behind, drug design is discussed.
References
[1] M. W. Dong, Modern HPLC for Practicing Scientists 2006 (Wiley: Chichester).[2] L. H. J. Lajunen, P. Peramaki, Advantages and Mutual Comparison of Atomic Spectroscopic Methods. Spectrochemical Analysis by Atomic Absorption and Emission 2004, pp. 324–327 (Royal Society of Chemistry: Cambridge).
[3] T. Paunesku, S. Vogt, J. Maser, B. Lai, G. Woloschak, J. Cell. Biochem. 2006, 99, 1489.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Gks7nN&md5=bb7922fb886ff489801e982d1ca3d141CAS |
[4] C. J. Fahrni, Curr. Opin. Chem. Biol. 2007, 11, 121.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFegtb0%3D&md5=c47c73e13f553d4b7debd5948f73b176CAS |
[5] D. B. Williams, C. B. Carter, Transmission Electron Microscopy. A Textbook for Materials Science 1996 (Plenum Press: New York, NY).
[6] R. Jenkins, X-Ray Fluorescence Spectrometry (Ed. J. D. Winefordner) 1999 (John Wiley and Sons: New York, NY).
[7] K. L. Williams, An Introduction to X-Ray Spectrometry 1987 (Allen and Unwin: London).
[8] C. T. Dillon, Synchrotron Radiation X-Ray Spectroscopy for Investigations of Intracellular Metallointercalators: X-Ray Fluorescence Imaging and X-Ray Absorption Spectroscopy, in Metallointercalators: Synthesis and Techniques to Probe Their Interactions with Biomolecules 2011 (Ed. J. R. Adrich-Wright) (Springer: Wein).
[9] F. Adams, K. Janssens, A. Snigirev, J. Anal. At. Spectrom. 1998, 13, 319.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisF2kt7w%3D&md5=4cb0750e8e89d2b8857d766b5706a7ccCAS |
[10] G. Botton, Analytical Electron Microscopy, in Science of Microscopy 2007, pp. 273–405 (Eds P. W. Hawkes, J. C. H. Spence) (Springer: New York, NY).
[11] G. J. F. Legge, A. P. Mazzolini, Nucl. Instrum. Methods Phys. Res. A 1980, 168, 563.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhsValuro%3D&md5=8d2ca041a3a33e253089e63ceb4df6ebCAS |
[12] G. E. Ice, XRay Spectrom. 1997, 26, 315.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXns1SktLc%3D&md5=66ba7cdd91d9ce49489fb9829692d6ffCAS |
[13] P. Dhez, P. Chevallier, T. B. Lucatorto, C. Tarrio, Rev. Sci. Instrum. 1999, 70, 1907.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitFGmu7g%3D&md5=e752e0ed4d8c0035222bad8bf59e941eCAS |
[14] J. Kirz, D. Attwood, X-Ray Data Booklet. Section 4.4 Zone Plates 2001 (Lawrence Berkeley National Laboratory). Available from: xdb.lbl.gov/Section4/Sec_4–4.html
[15] A. Carmona, P. Cloetens, G. Deves, S. Bohic, R. Ortega, J. Anal. At. Spectrom. 2008, 23, 1083.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVCnurc%3D&md5=be0cf58933d75ca22364ebe197180ee3CAS |
[16] R. Lobinski, C. Moulin, R. Ortega, Biochimie 2006, 88, 1591.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Cis73I&md5=ab73cf6c1e1f621c40de6d0563794a75CAS |
[17] R. Ortega, Nucl. Instrum. Methods Phys. Res. B 2005, 231, 218.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktFWisL4%3D&md5=a6927674276a46dbcbf16bbe5215cf83CAS |
[18] F. Van Langevelde, R. D. Vis, Anal. Chem. 1991, 63, 2253.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlsleltb4%3D&md5=176f23ff7293f10f5b4fa9ba2587b6b1CAS |
[19] S. Bohic, A. Simionovici, R. Ortega, D. Heymann, C. Schroer, A. Snigirev, Nucl. Instrum. Methods Phys. Res. B 2001, 181, 728.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmslejsLo%3D&md5=56246b2741dc49f47ead7679544de13fCAS |
[20] M. Cholewa, C. Dillon, P. Lay, D. R. Phillips, T. Talarico, B. Lai, D. X. Blanc, Z. Barnea, Z. Cai, G. B. Deacon, P. Ilinski, D. Legnini, S. Rainone, G. Shea-McCarthy, A. P. J. Stampfi, L. K. Webster, W. Yun, Nucl. Instrum. Methods Phys. Res. B 2001, 181, 715.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmslejsLw%3D&md5=bf3aaa5f4e1141b84ca7314a55d6b2deCAS |
[21] P. M. Bertsch, D. B. Hunter, Chem. Rev. 2001, 101, 1809.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkt1ekurc%3D&md5=47f405413d688ddf404d6cc4e179dba2CAS |
[22] C. G. Ryan, B. E. Etschmann, S. Vogt, J. Maser, C. L. Harland, E. van Achterbergh, D. Legnini, Nucl. Instrum. Methods Phys. Res. B 2005, 231, 183.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktFWis70%3D&md5=f23068b8d18f9d1729f2869f6e35f6e8CAS |
[23] A. Thompson, D. Attwood, E. Gullikson, M. Howells, K.-J. Kim, J. Kirz, J. Kortright, I. Lindau, P. Pianetta, A. Robinson, J. Scofield, J. Underwood, D. Vaughan, H. Winick, X-Ray Data Booklet 2001 (Eds C. Thompson, D. Vaughan) (Lawrence Berkeley National Laboratory: Berkeley, CA).
[24] J. B. Aitken, E. A. Carter, H. Eastgate, M. J. Hackett, H. H. Harris, A. Levina, Y.-C. Lee, C.-I. Chen, B. Lai, S. Vogt, P. A. Lay, Radiat. Phys. Chem. 2010, 79, 176.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVaju7%2FP&md5=d60c2bcc898b7701f5c9d45aa4261566CAS |
[25] Z. Cai, B. Lai, W. Yun, I. McNulty, A. Khounsary, J. Maser, P. Ilinski, D. Legnini, E. Trakhtenberg, S. Xu, B. Tieman, G. Wiemerslage, E. Gluskin, in Am. Inst. Phys. Conf. Proc. 2000, 521, 31.
[26] P. Ilinski, B. Lai, Z. Cai, W. Yun, D. Legnini, T. Talarico, M. Cholewa, L. K. Webster, G. B. Deacon, S. Rainone, D. R. Phillips, A. P. J. Stampfl, Cancer Res. 2003, 63, 1776.
| 1:CAS:528:DC%2BD3sXivFynsrY%3D&md5=6456f32ddbd2afcf2def1979ccc06f08CAS |
[27] E. Gullikson, X-Ray Interactions with Matter, 1995–2010 Center for X-ray Optics. Available from: http://henke.lbl.gov/optical_constants/.
[28] C. T. Dillon, P. A. Lay, B. J. Kennedy, A. P. J. Stampfl, Z. Cai, P. Ilinski, W. Rodrigues, D. G. Legnini, B. Lai, J. Maser, J. Biol. Inorg. Chem. 2002, 7, 640.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVClt7s%3D&md5=51c5b300dd6782b37ee20a572c9ba116CAS |
[29] E. A. Carter, B. S. Rayner, A. I. McLeod, L. E. Wu, C. P. Marshall, A. Levina, J. B. Aitken, P. K. Witting, B. Lai, Z. Cai, S. Vogt, Y.-C. Lee, C.-I. Chen, M. J. Tobin, H. H. Harris, P. A. Lay, Mol. Biosyst. 2010, 6, 1316.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVOns70%3D&md5=4106f282bc281a3e839b559f90658134CAS |
[30] H. H. Harris, A. Levina, C. T. Dillon, I. Mulyani, B. Lai, Z. Cai, P. A. Lay, J. Biol. Inorg. Chem. 2005, 10, 105.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtVWmt7c%3D&md5=d5d2533b929d34500b07f77a38dbd422CAS |
[31] J. B. Waern, H. H. Harris, B. Lai, Z. Cai, M. M. Harding, C. T. Dillon, J. Biol. Inorg. Chem. 2005, 10, 443.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVClt7%2FL&md5=daef9f2afb9f7e5980d3350df82ed316CAS |
[32] K. L. Munro, A. Mariana, A. Klavins, A. J. Foster, B. Lai, Z. Cai, S. Vogt, H. H. Harris, C. T. Dillon, Chem. Res. Toxicol. 2008, 21, 1760.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvF2gs70%3D&md5=9eee2718a51ea7fb5dea1cf8b413fbe6CAS |
[33] M. D. Hall, C. T. Dillon, M. Zhang, P. Beale, Z. Cai, B. Lai, A. P. J. Stampfl, T. W. Hambley, J. Biol. Inorg. Chem. 2003, 8, 726.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1KisLc%3D&md5=33a8b77d6d7d6e287536e46df534a2c3CAS |
[34] M. J. Hackett, J. A. McQuillan, F. El-Assaad, J. B. Aitken, A. Levina, D. D. Cohen, R. Siegele, E. A. Carter, G. E. Grau, N. H. Hunt, P. A. Lay, Analyst 2011, 136, 2941.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotVektL0%3D&md5=7d07b770f1f93a33a68f0cc323b8e3faCAS |
[35] R. McRae, B. Lai, S. Vogt, C. J. Fahrni, J. Struct. Biol. 2006, 155, 22.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvF2nsLk%3D&md5=165499b14fcf6fab9be88e74ad83f1b6CAS |
[36] G. Liu, W. Huang, R. D. Moir, C. R. Vanderburg, B. Lai, Z. Peng, R. E. Tanzi, J. T. Rogers, X. Huang, J. Struct. Biol. 2006, 155, 45.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvF2nsbo%3D&md5=1b0ab815a1ce7e07ca529ae8bb8b1522CAS |
[37] J. J. Bozzola, L. D. Russell, Electron Microscopy. Principles and Techniques for Biologists 1999, pp. 17–47 (Jones and Bartlett: Massachusetts).
[38] M. D. Hall, R. A. Alderden, M. Zhang, P. Beale, Z. Cai, B. Lai, A. P. J. Stampfl, T. W. Hambley, J. Struct. Biol. 2006, 155, 38.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvF2nsb8%3D&md5=53079a3ca8710a845462244424f0996fCAS |
[39] A. V. Klein, T. W. Hambley, Chem. Rev. 2009, 109, 4911.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGktbrK&md5=b6baacb9012bd5540685b0cee64b20b9CAS |
[40] E. L. Crossley, J. B. Aitken, S. Vogt, H. H. Harris, L. M. Rendina, Angew. Chem. Int. Ed. 2010, 49, 1231.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslWluro%3D&md5=1a464e561891926e02db12240f41f5b7CAS |
[41] E. L. Crossley, J. B. Aitken, S. Vogt, H. H. Harris, L. M. Rendina, Aust. J. Chem. 2011, 64, 253.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFynsb4%3D&md5=89644374ea77bc5da0c59aaebc587d8aCAS |
[42] M. H. Cohen, S. Hirschfeld, S. F. Honig, A. Ibrahim, J. R. Johnson, J. J. O’Leary, R. M. White, G. A. Williams, R. Pazdur, Oncologist 2001, 6, 4.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtlKjsbY%3D&md5=aec22256f4829955e500dc7da6b4c54cCAS |
[43] T. Bachleitner-Hofmann, M. Kees, H. Gisslinger, Leuk. Lymphoma 2002, 43, 1535.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntVaktbg%3D&md5=546c3c3774b1be16b7ee49850c86871cCAS |
[44] D.-P. Lu, J.-Y. Qiu, B. Jiang, Q. Wang, K.-Y. Liu, Y.-R. Liu, S.-S. Chen, Blood 2002, 99, 3136.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtlGqsr8%3D&md5=c84f93101dc17058a54c10c8cbbf6e41CAS |
[45] A. S. Don, O. Kisker, P. Dilda, N. Donoghue, X. Zhao, S. Decollogne, B. Creighton, E. Flynn, J. Folkman, P. J. Hogg, Cancer Cell 2003, 3, 497.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktlyiu7o%3D&md5=a53474830e1ae37911d15eb4412c44d9CAS |
[46] I. Nicolis, P. Dacher, F. Guyon, P. Chevallier, E. Curis, S. Benazeth, J. Trace Microprobe T. 2002, 20, 565.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsVOktbo%3D&md5=b7d86e39bbc5ab439ac8d29a191dd7f4CAS |
[47] I. Nicolis, E. Curis, P. Deschamps, S. Benazeth, Biochimie 2009, 91, 1260.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFantLnL&md5=2d641ad33ddbde236284e41daced1823CAS |
[48] K. L. Munro, C. T. Dillon, University of Wollongong, unpublished results, 2010.
[49] L. Yee-Chien, H. Haimei, Mutagenesis 1996, 11, 75.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XpslGjsA%3D%3D&md5=ace88ca49565fc06322fdc68906807a1CAS |
[50] S. Orrenius, B. Zhivotovsky, P. Nicotera, Nat. Rev. Mol. Cell Biol. 2003, 4, 552.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltVWnu7g%3D&md5=d3da6c424eb90052127e0b1eb46dcb27CAS |
[51] P. Kopf-Maier, H. Kopf, Angew. Chem. Int. Ed. Engl. 1979, 18, 477.
| Crossref | GoogleScholarGoogle Scholar |
[52] T. Paunesku, S. Vogt, B. Lai, J. Maser, N. Stojievi, K. T. Thurn, C. Osipo, H. Liu, D. Legnini, Z. Wang, C. Lee, G. E. Woloschak, Nano Lett. 2007, 7, 596.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Wqs7w%3D&md5=e7e672e8a75cd7b541322b7fea62fec3CAS |
[53] I. Imaz, M. Rubio-Martinex, L. Garcia-Fernandez, F. Carcia, D. Ruiz-Molina, J. Hernando, V. Puntes, D. Maspoch, Chem. Commun. 2010, 46, 4737.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnslSnsbw%3D&md5=04607f55304899ba825358c9593de7edCAS |
[54] P. J. Endres, T. Paunesku, S. Vogt, T. J. Meade, G. Woloschak, J. Am. Chem. Soc. 2007, 129, 15760.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOnu77J&md5=cef8f1ed3cf1525abe85fd13e3d8e5a6CAS |
[55] P. A. Ali, A. F. Al-Hussany, C. A. Bennett, D. A. Hancock, A. M. El-Sharkawi, Phys. Med. Biol. 1998, 43, 2337.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXls1egtLc%3D&md5=6b463205e235fafd9b9409d82ac6f1e2CAS |
[56] R. A. Alderden, H. R. Mellor, S. Modok, M. D. Hall, S. R. Sutton, M. G. Newville, R. Callaghan, T. W. Hambley, J. Am. Chem. Soc. 2007, 129, 13400.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFGnsLjE&md5=494555844509886692ebb5d8b5cb8bdfCAS |
[57] M. D. de Jonge, S. Vogt, Curr. Opin. Struct. Biol. 2010, 20, 606.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKmu7fF&md5=5eb8a9945a07d09b576687641656a042CAS |
[58] J. E. Penner-Hahn, Coord. Chem. Rev. 2005, 249, 161.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFejs7zL&md5=6e1583335a552a23a888d10616875a09CAS |
[59] N. H. Zahler, ACS Chem. Biol. 2010, 5, 541.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVans74%3D&md5=6130f5efebdd9711b4f372c40b986e32CAS |
[60] L. Finney, Y. Chishti, T. Khare, C. Giometti, A. Levina, P. A. Lay, S. Vogt, ACS Chem. Biol. 2010, 5, 577.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1Wrtr0%3D&md5=92db0fe9970495dca7ecf432aadfd59eCAS |
[61] I. Ascone, W. Meyer-Klaucke, L. Murphy, J. Synchrotron Radiat. 2003, 10, 16.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsFGj&md5=ff73d9a984830b2f7b72a6d903a9eee3CAS |
[62] J. E. Penner-Hahn, Coord. Chem. Rev. 1999, 190–192, 1101.
| Crossref | GoogleScholarGoogle Scholar |
[63] J. E. Penner-Hahn, X-Ray Absorption Spectroscopy, in Comprehensive Coordination Chemistry II 2004, pp. 159–86 (Eds J. A. McCleverty, T. J. Meyer) (Elsevier: Oxford).
[64] J. B. Aitken, A. Levina, P. A. Lay, Curr. Top. Med. Chem. 2011, 11, 553.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktVOqsro%3D&md5=e1d99ae37296bd3be3321cbbe33ed9e0CAS |
[65] A. Levina, R. S. Armstrong, P. A. Lay, Coord. Chem. Rev. 2005, 249, 141.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFejs7zK&md5=e641223ee7aaa9b72c4127709a799395CAS |
[66] C. T. Dillon, P. A. Lay, M. Cholewa, G. J. F. Legge, A. M. Bonin, T. J. Collins, K. L. Kostka, G. Shea-McCarthy, Chem. Res. Toxicol. 1997, 10, 533.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtVehurc%3D&md5=627370d50242cfd1fed851c0077b258cCAS |
[67] A. Levina, H. H. Harris, P. A. Lay, J. Am. Chem. Soc. 2007, 129, 1065.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1GgtQ%3D%3D&md5=14481e18ed99e76502405564cc3e4b9aCAS |
[68] C. Weeks, A. Levina, C. T. Dillon, P. Turner, R. R. Fenton, P. A. Lay, Inorg. Chem. 2004, 43, 7844.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptValsrs%3D&md5=afee795a60ead9d85556312eaa096d48CAS |
[69] A. Levina, G. J. Foran, D. I. Pattison, P. A. Lay, Angew. Chem. Int. Ed. 2004, 43, 462.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWltLk%3D&md5=e551aa01357179c6a8465ac674cf2f8dCAS |
[70] R. Ortega, J. Anal. At. Spectrom. 2011, 26, 23.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFyms73F&md5=257dfd49eaa7b34b1b876320fcea2dd2CAS |
[71] F. Jalilehvand, L. J. Laffin, Inorg. Chem. 2008, 47, 3248.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislemsL0%3D&md5=dd1a781456e5440c2a34b5f67f2c98a2CAS |
[72] E. C. Beret, K. Provost, D. Muller, E. S. Marcos, J. Phys. Chem. B 2009, 113, 12343.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSgtbzJ&md5=975a148372c7fd04cdc032b58ecbc3efCAS |
[73] E. F. Molina, S. H. Pulcinelli, C. V. Santilli, S. Blanchandin, V. Briois, J. Phys. Chem. B 2010, 114, 3461.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlaktbo%3D&md5=95797e9da7cad052bef63a1920319ba5CAS |
[74] M. D. Hall, G. J. Foran, M. Zhang, P. J. Beale, T. W. Hambley, J. Am. Chem. Soc. 2003, 125, 7524.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktFGqtLs%3D&md5=b2cfc76cb62a2ab0388939f79a341976CAS |
[75] H. L. Daly, M. D. Hall, T. W. Failes, M. Zhang, G. J. Foran, T. W. Hambley, Aust. J. Chem. 2011, 64, 273.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFynsLc%3D&md5=0e109de77c42ec96d93dc1613399889bCAS |
[76] I. Nicolis, P. Deschamps, E. Curis, O. Corriol, V. Acar, N. Zerrouk, J.-C. Chaumeil, F. Guyon, S. Benazeth, J. Synchrotron Radiat. 2001, 8, 984.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhs1artr0%3D&md5=105ea7afdd65d1da2c1fad87fa6e1687CAS |
[77] T. Bacquart, G. Deves, R. Ortega, Environ. Res. 2010, 110, 413.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntlWqt7Y%3D&md5=0ac0ec25e734fa36874ba53865564237CAS |
[78] M. D. Hall, C. K. Underwood, T. W. Failes, G. J. Foran, T. W. Hambley, Aust. J. Chem. 2007, 60, 180.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFKjur0%3D&md5=ab1a38e18e6564c32011e39535ba8839CAS |
[79] M. D. Hall, T. W. Failes, N. Yamomoto, T. W. Hambley, Dalton Trans. 2007, 3983.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVWit77N&md5=3a7d729d7d5654f1e12cd59939c6fad4CAS |
[80] P. D. Bonnitcha, M. D. Hall, C. K. Underwood, G. J. Foran, M. Zhang, P. J. Beale, T. W. Hambley, J. Inorg. Biochem. 2006, 100, 963.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVClu7w%3D&md5=1e8f084e85155d21ae5bc54164e5ff77CAS |
[81] L. V. Liu, C. B. Bell, S. D. Wong, S. A. Wilson, Y. Kwak, M. S. Chow, J. Zhao, K. O. Hodgson, B. Hedman, E. I. Solomon, Proc. Natl. Acad. Sci. USA 2010, 107, 22419.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1Knug%3D%3D&md5=923ec4062f1f9edacab6aece49764474CAS |
[82] M. S. Walczak, K. Lawniczak-Jablonska, A. Wolska, M. Sikora, A. Sienkiewicz, L. Suarez, A. J. Kosar, M.-J. Bellemar, D. S. Bohle, J. Phys. Chem. 2011, 115, 4419.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVamsrg%3D&md5=36af173d52c60f48bf64e23b8d64957cCAS |
[83] R. C. Elder, M. K. Eidsness, M. J. Heeg, K. G. Tepperman, C. F. Shaw III, N. Schaeffer, in ACS Symposium Series 209 1983, p. 385 (American Chemical Society: Washington, D.C.).
[84] L. Messori, A. Balerna, I. Ascone, C. Castellano, C. Gabbiani, A. Casini, C. Marchioni, G. Jaouen, A. Congiu Castellano, J. Biol. Inorg. Chem. 2011, 16, 491.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1WmurrF&md5=a0c2c88fd8bd0ad7658554e8638c1be7CAS |
[85] J. E. Weder, T. W. Hambley, B. J. Kennedy, P. A. Lay, G. J. Foran, A. M. Rich, Inorg. Chem. 2001, 40, 1295.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtVCgu7Y%3D&md5=2e20ada677e4c95075620c3e2e030e5aCAS |
[86] Q. Zhou, T. W. Hambley, B. J. Kennedy, P. A. Lay, Inorg. Chem. 2003, 42, 8557.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovVyrt7c%3D&md5=9303f17b46357c0e45561f1a54b3aeeeCAS |
[87] A. Levina, A. Mitra, P. A. Lay, Metallomics 2009, 1, 458.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslWlurg%3D&md5=b8a61f8880f3a13bacce1f976797986cCAS |
[88] I. Ascone, L. Messori, A. Casini, C. Gabbiani, A. Balerna, F. Dell’Unto, A. Congiu Castellano, Inorg. Chem. 2008, 47, 8629.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVaitL7O&md5=8b417808ad328f60b1fe1917fd6ec67fCAS |
[89] M. Liu, Z. H. Lim, Y. Y. Gwee, A. Levina, P. A. Lay, Angew. Chem. Int. Ed. 2010, 49, 1661.
| 1:CAS:528:DC%2BC3cXisVakt7o%3D&md5=a0ab90759321dedab5d61923f41c1d37CAS |
[90] A. Nguyen, I. Mylyani, A. Levina, P. A. Lay, Inorg. Chem. 2008, 47, 4299.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFKiurw%3D&md5=eaf61158ac57e93d1a1a36caa20586e7CAS |
[91] C. M. Weekley, J. B. Aitken, S. Vogt, L. A. Finney, D. J. Paterson, M. D. de Jonge, D. L. Howard, I. F. Musgrave, H. H. Harris, Biochemistry 2011, 50, 1641.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitFGiu78%3D&md5=3c5d47e410b3ecfe67ba9c7b4f83f308CAS |
[92] K. R. Flower, I. Khalifa, P. Bassan, D. Demoulin, E. Jackson, N. P. Lockyer, A. T. McGown, P. Miles, L. Vaccari, P. Gardner, Analyst (Lond.) 2011, 136, 498.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVGrtA%3D%3D&md5=4601eafeb9acc49efba7e8e56492c3ebCAS |
[93] T. J. Harvey, E. Gazi, A. Henderson, R. D. Snook, N. W. Clark, M. Brown, P. Gardner, Analyst (Lond.) 2009, 134, 1083.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVSmsr8%3D&md5=acfda87a6bbc000192fb0aeca8af0935CAS |
[94] M. J. Tobin, M. A. Chesters, J. M. Chalmers, F. J. M. Rutten, S. E. Fisher, I. M. Symonds, A. Hitchcock, R. Allibone, S. Dias-Gunasekara, Faraday Discuss. 2004, 126, 27.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvVKlu78%3D&md5=c9d28356f5f0491246a136c0d12aadafCAS |
[95] B. Rigas, S. Morgello, I. S. Goldman, P. T. T. Wong, Proc. Natl. Acad. Sci. USA 1990, 87, 8140.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmtV2itbw%3D&md5=1ee4ad887a6f624583ad86f4813ab50aCAS |
[96] K. R. Bambery, B. R. Wood, M. A. Quinn, D. McNaughton, Aust. J. Chem. 2004, 57, 1139.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVGns73P&md5=8d2e4fdd6ee0b30ef2ca91b56da50ba7CAS |
[97] R. K. Dukor, M. N. Leibman, B. L. Johnson, AIP Conf. Proc. 1998, 430, 327.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkslGrtrk%3D&md5=4bad35474e41175d0d0fe51180af4c1cCAS |
[98] S. F. Chew, B. R. Wood, C. Kanaan, J. Browning, D. MacGregor, I. D. Davis, J. Cebon, B. D. Tait, D. McNaughton, Tissue Antigens 2007, 69, 252.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmt1CntLg%3D&md5=6c44748f769c7ade35f85a033d7ebe99CAS |
[99] D. Naumann, Appl. Spectrosc. Rev. 2001, 36, 239.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvVykt74%3D&md5=bda79b11fff0eec54663faf28ea90f0fCAS |
[100] A. Kretlow, Q. Wang, J. Kneipp, P. Lasch, M. Beekes, L. Miller, D. Naumann, Biochem. Biophys. Acta 2006, 1758, 948.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotlKnur0%3D&md5=27495f2ddec24e0477ceb75ee5373338CAS |
[101] L. M. Miller, Q. Wang, T. P. Telivala, R. J. Smith, A. Lanzirotti, J. Mikllossy, J. Struct. Biol. 2006, 155, 30.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvF2nsLc%3D&md5=a2aef81819efae0fb84b4c1a5ad41579CAS |
[102] L. M. Miller, P. Dumas, N. Jamin, J.-L. Teillaud, J. Miklossy, L. Forro, Rev. Sci. Instrum. 2002, 73, 1357.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhslCnt74%3D&md5=84cd2c3332e7b0cbef514cf79c572422CAS |
[103] F. Severcan, G. Gorgulu, S. T. Gorgulu, T. Guray, Anal. Biochem. 2005, 339, 36.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXit1eqs7g%3D&md5=f0276ed368dc52e0f4663eb02bdf3c94CAS |
[104] G. T. Webster, K. A. de Villiers, T. J. Egan, S. Deed, L. Tilley, M. J. Tobin, K. R. Bambery, D. McNaughton, B. R. Wood, Anal. Chem. 2009, 81, 2516.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivFOmtbg%3D&md5=8ffa0c166c68fb00991cf2b3e30f1389CAS |
[105] S.-Y. Lin, M.-J. Li, W.-T. Cheng, Spectroscopy 2007, 21, 1.
[106] P. Dumas, L. Miller, Vib. Spectrosc. 2003, 32, 3.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXls1alsLY%3D&md5=033f9e9e4b8cfca47d6c172b330caf3aCAS |
[107] C. Petibois, M. Piccinini, M. C. Guidi, A. Marcelli, J. Synchrotron Radiat. 2010, 17, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFyksb7F&md5=20c35d55965a6a115b72b761ee88d817CAS |
[108] F. Draux, P. Jeannesson, C. Gobinet, J. Sule-Suso, J. K. Pijanka, C. Sandt, P. Dumas, M. Manfait, G. D. Sockalingum, Anal. Bioanal. Chem. 2009, 395, 2293.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1SqtrvI&md5=acb0aadb9c7f82e4fb5b019059edc7d9CAS |
[109] G. Bellisola, M. Della Peruta, M. Vezzalini, E. Moratti, L. Vaccari, G. Birarda, M. Piccinini, G. Cinque, C. Sorio, Analyst (Lond.) 2010, 135, 3077.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVaqu7vL&md5=02492aad9f7584d7a1129861c370b0d9CAS |
[110] K. L. Munro, K. R. Bambery, E. A. Carter, L. Puskar, M. J. Tobin, B. Wood, C. T. Dillon, Vib. Spectrosc. 2010, 53, 39.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFCnsr8%3D&md5=ae044eff47fecc72b34d11b3b5fc2747CAS |
[111] S. Chio-Srichan, M. Refregiers, F. Jamme, S. Kascakova, V. Rouam, P. Dumas, Biochem. Biophys. Acta 2008, 1780, 854.
| 1:CAS:528:DC%2BD1cXkvFWqu7w%3D&md5=6959388485b18c0827b1a58fc17f18bdCAS |
[112] A.-M. Mamoon, A. M. Gamal-Eldeen, M. E. Ruppel, R. J. Smith, T. Tsang, L. M. Miller, Photodiagn. Photodyn. Ther. 2009, 6, 105.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGmsb%2FN&md5=12b7718ffb18229c07c5f79757d3bed9CAS |
[113] A. Barth, Biochem. Biophys. Acta 2007, 1767, 1073.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFWmt7Y%3D&md5=defe0c2be410acb9d922fe10da10115eCAS |
[114] A. Pevsner, M. Diem, Biopolymers 2003, 72, 282.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsFantr4%3D&md5=01f2ddd13161d2f78a8c872170f01b63CAS |
[115] D. M. Byler, H. Susi, Biopolymers 1986, 25, 469.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xht1GqtLc%3D&md5=292d1da2f37bb0fc89d57fed409b74a9CAS |
[116] Y. Wang, R. I. Boysen, B. R. Wood, M. Kansiz, D. McNaughton, M. T. W. Hearn, Biopolymers 2008, 89, 895.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1SrsL%2FN&md5=524fcb4cf9c14ce210cef2a76d0541b3CAS |
[117] F. Gasparri, M. Muzio, Biochem. J. 2003, 369, 239.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtlOjsw%3D%3D&md5=0800374173398e4e2a5dc5c081302f78CAS |
[118] A. J. Bentley, T. Nakamura, A. Hammiche, H. M. Pollock, F. L. Martin, S. Kinoshita, N. J. Fullwood, Mol. Vis. 2007, 13, 237.
| 1:CAS:528:DC%2BD2sXjsl2rtLs%3D&md5=fc6e9488104504d53e1d54f80d5eac1dCAS |
[119] L. M. Miller, P. Dumas, Biochim. Biophys. Acta 2006, 1758, 846.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotlKnt7k%3D&md5=ad4b3927f06ae2022831701ccc55f92aCAS |
[120] E. A. Carter, K. K. Tam, R. S. Armstrong, P. A. Lay, Biophys. Rev. 2009, 1, 95.
| Crossref | GoogleScholarGoogle Scholar |
[121] P. Bassan, A. Kohler, H. Martens, J. Lee, H. J. Byrne, P. Dumas, E. Gazi, M. Brown, N. Clarke, P. Gardner, Analyst (Lond.) 2010, 135, 268.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsFWnsw%3D%3D&md5=fbab003c0947ec7ed9391149c00da54fCAS |
[122] B. Mohlenhoff, M. Romeo, M. Diem, B. R. Wood, Biophys. J. 2005, 88, 3635.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktFSgs7w%3D&md5=4d82ab9e868c7164d7be33509e10fe3aCAS |
[123] P. Bassan, H. J. Byrne, F. Bonnier, J. Lee, P. Dumas, P. Gardner, Analyst (Lond.) 2009, 134, 1586.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslCksrY%3D&md5=108b5b84f0054bf64ef3458a0de824b5CAS |
[124] J. K. Pijanka, A. Kohler, Y. Yang, P. Dumas, S. Chio-Srichan, M. Manfait, G. D. Sockalingum, J. Sole-Suso, Analyst (Lond.) 2009, 134, 1176.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVSntbc%3D&md5=c74de8cd2788510ee560ef196f75dbe3CAS |
[125] K.-Z. Liu, L. Jia, S. M. Kelsey, A. C. Newland, H. H. Mantsch, Apoptosis 2001, 6, 269.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsF2qu7Y%3D&md5=50c7cdc04dd371be2ec5f9632f444a8cCAS |
[126] M. J. Tobin, L. Puskar, R. L. Barber, E. C. Harvey, P. Heraud, B. R. Wood, K. R. Bambery, C. T. Dillon, K. L. Munro, Vib. Spectrosc. 2010, 53, 34.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFCnsr4%3D&md5=4e9b281d225825185d1d9705c3f43aebCAS |
[127] D. A. Moss, M. Keese, R. Pepperkok, Vib. Spectrosc. 2005, 38, 185.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtFShsb0%3D&md5=b56ac93125c5b1f1914c90512dd3cce0CAS |
[128] H.-Y. N. Holman, K. A. Bjornstad, M. P. McNamara, M. C. Martin, W. R. McKinney, E. A. Blakely, J. Biomed. Opt. 2002, 7, 417.
| Crossref | GoogleScholarGoogle Scholar |
[129] R. Y. Huang, L. M. Miller, C. S. Carlson, M. R. Chance, Bone 2002, 30, 492.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhslWgsLs%3D&md5=f6a28227b209f40f9a681ea78a4ef2d7CAS |