Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Stability and Cell Adhesion Properties of Poly(N-isopropylacrylamide) Brushes with Variable Grafting Densities

Xiaofeng Sui A , Andrea Di Luca B , Michel Klein Gunnewiek A , E. Stefan Kooij C , Clemens A. van Blitterswijk B , Lorenzo Moroni B , Mark A. Hempenius A and G. Julius Vancso A D
+ Author Affiliations
- Author Affiliations

A Department of Materials Science and Technology of Polymers, University of Twente, MESA+ Institute for Nanotechnology, PO Box 217, 7500 AE Enschede, The Netherlands.

B Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.

C Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.

D Corresponding author. Email: g.j.vancso@tnw.utwente.nl

Australian Journal of Chemistry 64(9) 1261-1268 https://doi.org/10.1071/CH11168
Submitted: 28 April 2011  Accepted: 25 June 2011   Published: 16 September 2011

Abstract

Poly(N-isopropylacrylamide) brushes with three different grafting densities were synthesized via surface-initiated atom-transfer radical polymerization on glass or on silicon substrates. The substrates were modified with monochlorosilane-based or trimethoxysilane-based atom-transfer radical polymerization initiators. Atomic force microscopy images showed detachment of brushes from the monochlorosilane-based system under cell culture conditions. In situ ellipsometry demonstrated the reversible swelling and collapse of the brushes as the temperature was varied across the lower critical solution temperature of poly(N-isopropylacrylamide) in pure water. The polymer brushes were evaluated as supporting substrates for MC-3T3 cell cultures. At 37°C (T>lower critical solution temperature), the seeded cells adhered, spread, and proliferated, whereas at 25°C (T<lower critical solution temperature), the cells detached from the surface. The low-density polymer brush showed the highest cell adhesion, featuring adhering cells with an elongated morphology.


References

[1]  A. Kumar, A. Srivastava, I. Y. Galaev, B. Mattiasson, Prog. Polym. Sci. 2007, 32, 1205.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSisbvO&md5=b23da68f1e0e1ce44b4d0f377c9716b9CAS |

[2]  R. Barbey, L. Lavanant, D. Paripovic, N. Schüwer, C. Sugnaux, S. Tugulu, H. A. Klok, Chem. Rev. 2009, 109, 5437.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht12iurbK&md5=af60b25227daa27a02b53be12f418345CAS |

[3]  P. M. Mendes, Chem. Soc. Rev. 2008, 37, 2512.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1OksrjL&md5=49325e35d654497733282aa31776d795CAS |

[4]  S. Edmondson, V. L. Osborne, W. T. S. Huck, Chem. Soc. Rev. 2004, 33, 14.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvV2ksLs%3D&md5=e55246b0445dba34a343da58ca8d19b7CAS |

[5]  K. Matyjaszewski, N. V. Tsarevsky, Nat. Chem. 2009, 1, 276.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsFOjtb8%3D&md5=6f2223ecf1624f8e62c17c5004270b90CAS |

[6]  S. Minko, Pol. Rev. 2006, 46, 397.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Gnt7nF&md5=ebb518ea439bf43dafb6be0fd8555736CAS |

[7]  M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, S. Minko, Nat. Mater. 2010, 9, 101.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  Y. Tsujii, K. Ohno, S. Yamamoto, A. Goto, T. Fukuda, Adv. Polym. Sci. 2006, 197, 1.
         | 1:CAS:528:DC%2BD28XlsVGhtrY%3D&md5=eeb2787632256a3627361f17ca206812CAS |

[9]  E. Wischerhoff, K. Uhlig, A. Lankenau, H. G. Börner, A. Laschewsky, C. Duschl, J. F. Lutz, Angew. Chem. Int. Ed. 2008, 47, 5666.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVGlsLc%3D&md5=160b48ebd0cd78b64ebc75bb0c3ad157CAS |

[10]  X. F. Sui, S. Zapotoczny, E. M. Benetti, P. Schön, G. J. Vancso, J. Mater. Chem. 2010, 20, 4981.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntlCqsLY%3D&md5=16cbcee19e8ce6aa8ee3929087c5f5b0CAS |

[11]  O. Smidsrød, J. E. Guillet, Macromolecules 1969, 2, 272.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  H. G. Schild, Prog. Polym. Sci. 1992, 17, 163.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltlWmuro%3D&md5=a0cfd4b3be524193d2ec1b966b05d898CAS |

[13]  X. F. Sui, S. Zapotoczny, E. M. Benetti, M. Memesa, M. A. Hempenius, G. J. Vancso, Polym Chem 2011, 2, 879.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFWnsb4%3D&md5=d51b67dca42b447b5ea91ef9f8187820CAS |

[14]  A. Synytska, E. Svetushkina, N. Puretskiy, G. Stoychev, S. Berger, L. Ionov, C. Bellmann, K.-J. Eichhorn, M. Stamm, Soft Matter 2010, 6, 5907.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVaqtrrF&md5=7f6b122346605a1f5185f1936d750602CAS |

[15]  N. Ishida, S. Biggs, Macromolecules 2010, 43, 7269.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVGmtLw%3D&md5=e949ce1e795fe9a9288133da2ecbae8cCAS |

[16]  E. M. Benetti, S. Zapotoczny, G. J. Vancso, Adv. Mater. 2007, 19, 268.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1entrw%3D&md5=a126a233c6703bc776c03a92bc31999aCAS |

[17]  E. C. Cho, Y. D. Kim, K. Cho, J. Colloid Interface Sci. 2005, 286, 479.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktFCru7c%3D&md5=9d9b89e3af6f57b70684a4cc715b7903CAS |

[18]  M. A. Cole, N. H. Voelcker, H. Thissen, R. G. Horn, H. J. Griesser, Soft Matter 2010, 6, 2657.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntF2gurs%3D&md5=1ee97fbefb24f2befd06702afd6176d5CAS |

[19]  N. Ishida, S. Biggs, Langmuir 2007, 23, 11083.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtV2msLbK&md5=052cdfd355f55c2a3ac509239202a344CAS |

[20]  D. M. Jones, J. R. Smith, W. T. S. Huck, C. Alexander, Adv. Mater. 2002, 14, 1130.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsFyrurs%3D&md5=9538f6c277bf908554dd0045cdbef8beCAS |

[21]  S. Kidoaki, S. Ohya, Y. Nakayama, T. Matsuda, Langmuir 2001, 17, 2402.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhvVSgtb8%3D&md5=42dba1c8616778bfde19625df173a10eCAS |

[22]  G. Liu, G. Zhang, J. Phys. Chem. B 2005, 109, 743.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtValsbnF&md5=444fbb81af581e3f163c8ba652f8c512CAS |

[23]  I. B. Malham, L. Bureau, Langmuir 2010, 26, 4762.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFWmur3P&md5=d3320efd10fefa7fc29d0e8aa7c7b771CAS |

[24]  S. Mendez, B. P. Andrzejewski, H. E. Canavan, D. J. Keller, J. D. McCoy, G. P. Lopez, J. G. Curro, Langmuir 2009, 25, 10624.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptVKms7o%3D&md5=94fde27681f3214c89b3a4a537e65cc2CAS |

[25]  K. N. Plunkett, X. Zhu, J. S. Moore, D. E. Leckband, Langmuir 2006, 22, 4259.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XislOgtbk%3D&md5=960ceaae1a38e2f1925d798dc4fddd92CAS |

[26]  H. Yim, M. S. Kent, S. Mendez, G. P. Lopez, S. Satija, Y. Seo, Macromolecules 2006, 39, 3420.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt1Kmtr0%3D&md5=48515ff798e9b30fbd6ff096501d8f72CAS |

[27]  X. Zhu, C. Yan, F. M. Winnik, D. Leckband, Langmuir 2007, 23, 162.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFChu7nN&md5=67655a14af90a2e8afb6cfe99757b600CAS |

[28]  M. Yamato, Y. Akiyama, J. Kobayashi, J. Yang, A. Kikuchi, T. Okano, Prog. Polym. Sci. 2007, 32, 1123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFeksL8%3D&md5=8b99879869e7804a0c80b29dfda02644CAS |

[29]  F. J. Xu, S. P. Zhong, L. Y. L. Yung, E. T. Kang, K. G. Neoh, Biomacromolecules 2004, 5, 2392.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotVCjtLs%3D&md5=3bc7dc6f3f208f67d78834f9d6db3a5cCAS |

[30]  F. J. Xu, S. P. Zhong, L. Y. L. Yung, Y. W. Tong, E. T. Kang, K. G. Neoh, Biomaterials 2006, 27, 1236.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Klu7nI&md5=1a61a3b75cf10505a6cc5fe9cd96021eCAS |

[31]  H. E. Canavan, X. H. Cheng, D. J. Graham, B. D. Ratner, D. G. Castner, Langmuir 2005, 21, 1949.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCnur%2FF&md5=422d6662386675bde43fcc5908b5a196CAS |

[32]  L. H. Li, Y. Zhu, B. Li, C. Y. Gao, Langmuir 2008, 24, 13632.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlant7bL&md5=fd6177971fcdaca66ef2c725cbb84ceaCAS |

[33]  J. E. Gautrot, B. Trappmann, F. Oceguera-Yanez, J. Connelly, X. M. He, F. M. Watt, W. T. S. Huck, Biomaterials 2010, 31, 5030.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvVejs78%3D&md5=d7a8cfe507e4433d221614d83cb57a2eCAS |

[34]  Y. X. Zhang, J. A. He, Y. Zhu, H. Chen, H. W. Ma, Chem. Commun. 2011, 47, 1190.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVymsw%3D%3D&md5=9af3f6856c8da0b94452965da78f6f25CAS |

[35]  S. Tugulu, H. A. Klok, Biomacromolecules 2008, 9, 906.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhslCht7k%3D&md5=e195ffba89f9b21234ee7d3458e9118dCAS |

[36]  X. F. Sui, Q. Chen, M. A. Hempenius, G. J. Vancso, Small 2011, 7, 1440.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtleitbw%3D&md5=0453bf9835186ac785e2b93f9b9e8e78CAS |

[37]  N. V. Tsarevsky, K. Matyjaszewski, Chem. Rev. 2007, 107, 2270.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvVelsrk%3D&md5=f22eb089c20d24c697cf7a852a606f4fCAS |

[38]  M. Kaholek, W. K. Lee, S. J. Ahn, H. W. Ma, K. C. Caster, B. LaMattina, S. Zauscher, Chem. Mater. 2004, 16, 3688.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFymu70%3D&md5=8fe52ec6f0f5c92a8e52b7b690b5ab50CAS |

[39]  S. Edmondson, N. T. Nguyen, A. L. Lewis, S. P. Armes, Langmuir 2010, 26, 7216.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksFeqs7s%3D&md5=9801a33f189f0e5fa23adf0e57f0575fCAS |

[40]  H. Tu, C. E. Heitzman, P. V. Braun, Langmuir 2004, 20, 8313.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVGqurc%3D&md5=516582bc0c05b0bfdeadfc5a1291201eCAS |

[41]  S. Yamamoto, M. Ejaz, Y. Tsujii, T. Fukuda, Macromolecules 2000, 33, 5608.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksFejsLg%3D&md5=1df091007b84af165345a5f32e2985c1CAS |

[42]  S. Schmidt, M. Zeiser, T. Hellweg, C. Duschl, A. Fery, H. Möhwald, Adv. Funct. Mater. 2010, 20, 3235.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1KhtbvE&md5=d294dc8e49676cefbbf2e7955c52cfe1CAS |

[43]  A. Mizutani, A. Kikuchi, M. Yamato, H. Kanazawa, T. Okano, Biomaterials 2008, 29, 2073.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivFKnt7Y%3D&md5=845bf0ca70b7b1446fd2bd50f7019853CAS |

[44]  Q. Yu, Y. X. Zhang, H. Chen, F. Zhou, Z. Q. Wu, H. Huang, J. L. Brash, Langmuir 2010, 26, 8582.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1Wqsb0%3D&md5=753c7c7a7e666e1162cb47d668479243CAS |

[45]  N. Matsuda, T. Shimizu, M. Yamato, T. Okano, Adv. Mater. 2007, 19, 3089.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht12jt7zO&md5=38f13860349b4725976606e510becd94CAS |

[46]  K. Fukumori, Y. Akiyama, Y. Kumashiro, J. Kobayashi, M. Yamato, K. Sakai, T. Okano, Macromol. Biosci. 2010, 10, 1117.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSqsLjN&md5=f642dbbeb91b3b7cb1712060b5d512f4CAS |

[47]  Y. Akiyama, A. Kikuchi, M. Yamato, T. Okano, Langmuir 2004, 20, 5506.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktlajtLo%3D&md5=a47f28d4a224866400774345923dda90CAS |

[48]  K. Fukumori, Y. Akiyama, M. Yamato, J. Kobayashi, K. Sakai, T. Okano, Acta Biomater. 2009, 5, 470.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVamurs%3D&md5=c3c599fdb2d5572f1ffb535d00962e34CAS |

[49]  T. Okano, N. Yamada, M. Okuhara, H. Sakai, Y. Sakurai, Biomaterials 1995, 16, 297.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktlOjtbw%3D&md5=accf3e0c66f98fc831691f60dcc7db64CAS |

[50]  A. Kikuchi, T. Okano, J. Control. Release 2005, 101, 69.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKgu7nF&md5=32835b6119c5b6c44c581d82a9431b0eCAS |

[51]  N. Singh, X. F. Cui, T. Boland, S. M. Husson, Biomaterials 2007, 28, 763.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKhsbbI&md5=87317b066af1975455e2f73092ef49bcCAS |

[52]  Y. Mei, T. Wu, C. Xu, K. J. Langenbach, J. T. Elliott, B. D. Vogt, K. L. Beers, E. J. Amis, N. R. Washburn, Langmuir 2005, 21, 12309.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1amtrrJ&md5=bea9f72348b8cb5066a2497ff5794e94CAS |

[53]  R. R. Bhat, B. N. Chaney, J. Rowley, A. Liebmann-Vinson, J. Genzer, Adv. Mater. 2005, 17, 2802.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlalu73J&md5=c4c6118c7922ddae4262e0d5f3e4fc7bCAS |

[54]  M. Zelzer, R. Majani, J. W. Bradley, F. R. A. J. Rose, M. C. Davies, M. R. Alexander, Biomaterials 2008, 29, 172.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Ghs7vK&md5=66c25caae576b9ecf6eadb226d1fa837CAS |

[55]  B. Lego, W. G. Skene, S. Giasson, Langmuir 2008, 24, 379.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWgur%2FL&md5=ec31a46c14c91c661eb9f0770f1e6843CAS |

[56]  E. D. Palik, Handbook of Optical Constants of Solids II 1991 (Academic Press: Boston).