Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Functionalized Polymers as Receptors for Detection of Cells*

Miroslava Polreichova A , Usman Latif A and Franz L. Dickert A B
+ Author Affiliations
- Author Affiliations

A Department of Analytical Chemistry, University of Vienna, Waehringerstrasse 38, A–1090 Vienna, Austria.

B Corresponding author. Email: franz.dickert@univie.ac.at

Australian Journal of Chemistry 64(9) 1256-1260 https://doi.org/10.1071/CH11181
Submitted: 4 May 2011  Accepted: 17 June 2011   Published: 16 September 2011

Abstract

Mass sensitive sensors were applied for fast and label-free detection of bio-analytes. Robust and miniaturized sensor devices were fabricated by combining bio-mimetic imprinted surfaces with quartz crystal microbalances for the analysis of yeast and bacteria cells. These sensors allow us to differentiate between different growing stages of yeast cells. Moreover, the viability of cells was detected by structuring quartz crystal microbalance electrodes like a grid. Artificial yeast cells were produced to pattern the recognition layer, giving reversible enrichment of the respective bio-analytes. This approach was followed to ensure the reproducibility of the identical sensitive material in each case, because the properties of each cell depend on its growth stage, which varies over time. The strategy was further applied to develop a sensitive system for Escherichia coli. Structuring of these materials by soft lithography allows differentiation between cell strains, e.g. E. coli (strain W & B) with a five-fold selectivity.


References

[1]  D. C. Apodaca, R. B. Pernites, R. R. Ponnapati, F. R. Del Mundo, R. C. Advincula, ACS Appl. Mater. Interfaces 2011, 3, 191.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVaisrrN&md5=88331418d2a0600fe77a98d44be175bbCAS |

[2]  U. Latif, A. Mujahid, A. Afzal, R. Sikorski, P. Lieberzeit, F. Dickert, Anal. Bioanal. Chem. 2011, 400, 2507.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktFektLw%3D&md5=734dca57648b322c0db1bccfbb42f112CAS |

[3]  M. Ávila, M. Zougagh, Á. Ríos, A. Escarpa, Trends Analyt. Chem. 2008, 27, 54.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  R. Selyanchyn, S. Korposh, S. Wakamatsu, S.-W. Lee, Sensors 2011, 11, 1177.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFWhsbg%3D&md5=5b126bd6bd931c9397a7260b27ba46d3CAS |

[5]  M. I. Newton, S. Atherton, R. H. Morris, S. M. Stanley, C. R. Evans, D. C. Hughes, G. McHale, J. Sensors 2010, Article ID 326365.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  R. Krupadam, B. Bhagat, M. Khan, Anal. Bioanal. Chem. 2010, 397, 3097.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVeqsrs%3D&md5=a8201a40c41a619ce9fca8e69394a5d0CAS |

[7]  W. L. Ho, T. C. Lin, Y. Y. Liu, J. A. Chen, J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng. 2010, 45, 211.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFOgs7c%3D&md5=802ded0ddaf9b289a0a73cfd21f9cd8aCAS |

[8]  U. Latif, A. Rohrer, P. Lieberzeit, F. Dickert, Anal. Bioanal. Chem. 2011, 400, 2457.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsF2jtL4%3D&md5=65fd2add115b41ef0c68d546f3513fe4CAS |

[9]  L. D. Bolisay, P. Kofinas, Macromol. Symp. 2010, 291–292, 302.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  E. Verheyen, J. P. Schillemans, M. van Wijk, M.-A. Demeniex, W. E. Hennink, C. F. van Nostrum, Biomaterials 2011, 32, 3008.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitFehtLk%3D&md5=45d15045e8f0014008686d75fe48335dCAS |

[11]  M. J. Whitcombe, I. Chianella, L. Larcombe, S. A. Piletsky, J. Noble, R. Porter, A. Horgan, Chem. Soc. Rev. 2011, 40, 1547.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1Kisbs%3D&md5=c334ebf4b3a0b304b8d87490023b26e0CAS |

[12]  C. J. Tan, H. G. Chua, K. H. Ker, Y. W. Tong, Anal. Chem. 2008, 80, 683.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXis1ynsw%3D%3D&md5=425b973582512899ea9ab4b5dbaf16f6CAS |

[13]  A. Seifner, P. Lieberzeit, C. Jungbauer, F. L. Dickert, Anal. Chim. Acta 2009, 651, 215.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtF2htr7K&md5=135f7dafc4714e75d3fa84e36309aaa5CAS |

[14]  O. Hayden, R. Bindeus, C. Haderspöck, K.-J. Mann, B. Wirl, F. L. Dickert, Sens. Actuators B Chem. 2003, 91, 316.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  B. B. Prasad, R. Madhuri, M. P. Tiwari, P. S. Sharma, Electrochim. Acta 2010, 55, 9146.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlaiurbF&md5=81149504dc412958a9d6bf9dd05bea31CAS |

[16]  K. Seidler, M. Polreichova, P. A. Lieberzeit, F. L. Dickert, Sensors 2009, 9, 8146.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlakurnO&md5=892e7e306e8b3816f53e3e955cf4f169CAS |

[17]  A. Day, C. Schneider, B. L. Schneider, Methods Mol. Biol. 2004, 241, 55.

[18]  G. Sauerbrey, Z. Phys. 1959, 155, 206.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1MXoslSjtQ%3D%3D&md5=9591776a7f12a5c2fc326bc280513ee6CAS |

[19]  R. Lucklum, C. Behling, P. Hauptmann, Anal. Chem. 1999, 71, 2488.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFegsb8%3D&md5=fb58fc3f5cca5ee99e8ecddb677edde1CAS |

[20]  O. Hayden, R. Bindeus, F. L. Dickert, Meas. Sci. Technol. 2003, 14, 1876.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFKgtL4%3D&md5=eac9f97d7d36b430686a5ce7648f5e47CAS |

[21]  I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, A. M. Baro, Rev. Sci. Instrum. 2007, 78, 013705.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2s3ptlaktw%3D%3D&md5=b23002b3e30fd487228189305c041414CAS |