Molecular Imaging of Red Blood Cells by Raman Spectroscopy
Bayden R. Wood A , Paul R. Stoddart B C and Donald McNaughton AA Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
B Faculty of Engineering and Industrial Science, Swinburne University of Technology, John Street, Hawthorn, Vic. 3122, Australia.
C Corresponding author. Email: PStoddart@groupwise.swin.edu.au
Australian Journal of Chemistry 64(5) 593-599 https://doi.org/10.1071/CH11136
Submitted: 8 April 2011 Accepted: 12 April 2011 Published: 30 May 2011
Abstract
Raman spectroscopy allows visualization of 2D and 3D chemical distributions at high spatial resolution in a wide range of samples. It is insensitive to water, which makes it particularly attractive for applications in the biological sciences. At the same time, technical advances have allowed the laser excitation power to be reduced on thermally sensitive samples, without sacrificing acquisition times. This review highlights the analytical and diagnostic potential of Raman imaging techniques by reference to recent studies of red blood cells. In the case of red blood cells infected with low-pigmented forms of the malaria parasite, molecular images reveal sub-micron-inclusions of haemozoin, which suggests that the technique has potential for early-stage diagnosis of the disease.
References
[1] E. Smith, G. Dent, Modern Raman Spectroscopy: A practical approach 2005 (Wiley: Hoboken).[2] P. R. Carey, J. Biol. Chem. 1999, 274, 26625.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmt1alu74%3D&md5=c5e512521b48ff7a07fbb98c059117a9CAS | 10480862PubMed |
[3] R. Petry, M. Schmitt, J. Popp, ChemPhysChem 2003, 4, 14.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntVCktg%3D%3D&md5=b626a1518884a62ef79f61cef0a072a4CAS | 12596463PubMed |
[4] K. Kneipp, H. Kneipp, I. Itzkan, R. P. Dasari, M. S. Feld, Chem. Rev. 1999, 99, 2957.
| 1:CAS:528:DyaK1MXmt12nt7Y%3D&md5=cabd31b0538d6c1d8e33c01ef6d70787CAS | 11749507PubMed |
[5] P. R. Stoddart, N. Brack, in The Surface Structure and Properties of Microbial Cells on the Nanometer Scale (Ed. E. P. Ivanova) 2007, pp. 1–58 (Nova: New York).
[6] J. J. Socha, M. W. Westneat, J. F. Harrison, J. S. Waters, W. K. Lee, BMC Biol. 2007, 5, 6.
| 17331247PubMed |
[7] E. L. Ritman, Adv. X-Ray Anal. 2006, 49, 1.
| 1:CAS:528:DC%2BD2sXpvFClug%3D%3D&md5=86c68e413984866bbe23f9bae9b7a5beCAS |
[8] G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, S. R. Cherry, Phys. Med. Biol. 2006, 51, 2029.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVKrtLk%3D&md5=974c1e09c34f91f5fe99616dc2a6877fCAS | 16585843PubMed |
[9] R. Weissleder, Nat. Rev. Cancer 2002, 2, 11.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvF2jt7k%3D&md5=3c4311508a252b57e7d32d7a88629b07CAS | 11902581PubMed |
[10] B. R. Wood, K. R. Bambery, C. J. Evans, M. A. Quinn, D. McNaughton, BMC Med. Imaging 2006, 6, 12.
| Crossref | GoogleScholarGoogle Scholar | 17014733PubMed |
[11] H. Ou-Yang, E. P. Paschalis, A. L. Boskey, R. Mendelsohn, Appl. Spectrosc. 2002, 56, 419.
| Crossref | GoogleScholarGoogle Scholar |
[12] F. Adar, M. Delhaye, E. DaSilva, J. Chem. Educ. 2007, 84, 50.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlGjsL3F&md5=c7cbd868c984705fc699192bb9b2a63eCAS |
[13] M. Delhaye, P. Dhamelincourt, J. Raman Spectrosc. 1975, 3, 33.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXktFygsbo%3D&md5=b2b396db76315091a7be0609c65d5a10CAS |
[14] L. C. N. Boogh, R. J. Meier, H. H. Kausch, B. J. Kip, J. Polym. Sci., B, Polym. Phys. 1992, 30, 325.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XitlKlt7k%3D&md5=580bb247687a2dcf838603d8bc6f6237CAS |
[15] T. Dieing, O. Hollricher, Vib. Spectrosc. 2008, 48, 22.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvFKgurY%3D&md5=003d2e5b587273e352cf464dfcf1927cCAS |
[16] L. Markwort, B. Kip, E. Dasilva, B. Roussel, Appl. Spectrosc. 1995, 49, 1411.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXptFGltrg%3D&md5=6be2f0cdf9e9e87c982e0c5f2c62a25fCAS |
[17] M. D. Schaeberle, H. R. Morris, J. F. Turner, P. J. Treado, Anal. Chem. 1999, 71, 175A.
[18] S. Bernard, O. Beyssac, K. Benzerara, Appl. Spectrosc. 2008, 62, 1180.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVaru7nM&md5=ed241b7ed01d6d5dabb26705ac0bad2eCAS | 19007458PubMed |
[19] M. Bowden, D. J. Gardiner, G. Rice, D. L. Gerrard, J. Raman Spectrosc. 1990, 21, 37.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhsVyls78%3D&md5=076b2207acf85b05a38aad0acac8e9d2CAS |
[20] K. A. Christensen, M. D. Morris, Appl. Spectrosc. 1998, 52, 1145.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsVOnurs%3D&md5=ca3f89480679f79eaf922642bc7bd643CAS |
[21] S. C. Denson, C. J. S. Pommier, M. B. Denton, J. Chem. Educ. 2007, 84, 67.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlGjsLnJ&md5=46016995f0941c0d5354249ba3127ef6CAS |
[22] B. R. Wood, P. J. Caspers, G. J. Puppels, S. Pandiancherri, D. McNaughton, Anal. Bioanal. Chem. 2007, 387, 1691.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFShsbk%3D&md5=3a273de70ee83f7065af16d9fc259271CAS | 17151857PubMed |
[23] B. R. Wood, L. Hammer, L. Davis, D. McNaughton, J. Biomed. Opt. 2005, 10, 014005.
| Crossref | GoogleScholarGoogle Scholar |
[24] B. R. Wood, L. Hammer, D. McNaughton, Vib. Spectrosc. 2005, 38, 71.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtFShtrY%3D&md5=00178677a6a8421e846ec40711d826b8CAS |
[25] B. R. Wood, D. McNaughton, J. Raman Spectrosc. 2002, 33, 517.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtVehu7Y%3D&md5=ff2024cfd55d7bbf0e11d9f472a3d8bfCAS |
[26] B. R. Wood, D. McNaughton, Biopolymers 2002, 67, 259.
| Crossref | GoogleScholarGoogle Scholar | 12012442PubMed |
[27] B. R. Wood, B. Tait, D. McNaughton, Biochim. Biophys. Acta 2001, 1539, 58.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktVKrtr0%3D&md5=c68c06b792864daf61e649760a6d7c35CAS | 11389968PubMed |
[28] T. Yamamoto, G. Palmer, J. Biol. Chem. 1973, 248, 5211.
| 1:CAS:528:DyaE3sXkslGiurk%3D&md5=e9c8c1e3707b499b839e734376458b1dCAS | 4352197PubMed |
[29] T. G. Spiro, Biological Applications of Raman Spectroscopy 1998, Vol. 3 (Wiley: New York).
[30] R. S. Armstrong, M. J. Irwin, P. E. Wright, J. Am. Chem. Soc. 1982, 104, 626.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XktlaqtA%3D%3D&md5=c99b9ae8bc86eb36e878214ac1d565e7CAS |
[31] M. Asghari-Khiavi, A. Mechler, K. R. Bambery, D. McNaughton, B. R. Wood, J. Raman Spectrosc. 2009, 40, 1668.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVaht73M&md5=9f96fd16a7bde53b5ce9e2a27fdd00faCAS |
[32] T. G. Spiro, T. C. Strekas, J. Am. Chem. Soc. 1974, 96, 338.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXnvFemsw%3D%3D&md5=a721d0723257417c16331a1f4ddf49c0CAS | 4361043PubMed |
[33] M. Asghari-Khiavi, B. R. Wood, A. Mechler, K. R. Bambery, D. W. Buckingham, B. M. Cooke, D. McNaughton, Analyst (Lond.) 2010, 135, 525.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1Cqt78%3D&md5=6ede21e23fcfe86d067b87bf2d3bb9ffCAS |
[34] S. Hu, K. M. Smith, T. G. Spiro, J. Am. Chem. Soc. 1996, 118, 12638.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntFSgtb4%3D&md5=0683690e6f7cd660d9e183a5cbba5015CAS |
[35] R. Dasgupta, S. Ahlawat, R. S. Verma, A. Uppal, P. K. Gupta, J. Biomed. Opt. 2010, 15, 065010.
| 21198174PubMed |
[36] L. L. Kang, Y. X. Huang, W. J. Liu, X. J. Zheng, Z. J. Wu, M. Luo, Biopolymers 2008, 89, 951.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1SrsL%2FL&md5=74f8fc1a06b780d3b4993a9b77ab257dCAS | 18615496PubMed |
[37] K. Ramser, C. Fant, M. Kall, J. Biomed. Opt. 2003, 8, 173.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXis1Chs7c%3D&md5=152e0f0a28d92a352a40f27120ab3c3fCAS | 12683842PubMed |
[38] S. Rao, S. Balint, L. del Carmen Frias, D. Petrov, J. Raman Spectrosc. 2009, 40, 1257.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGlsbvN&md5=8d74276085595f571b84fbbe1f7be0a2CAS |
[39] Y. Wu, Y. X. Huang, L. L. Kang, Z. J. Wu, M. Luo, Biopolymers 2009, 93, 348.
[40] B. R. Wood, S. J. Langford, B. M. Cooke, J. Lim, F. K. Glenister, M. Duriska, J. K. Unthank, D. McNaughton, J. Am. Chem. Soc. 2004, 126, 9233.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFemsr8%3D&md5=c265ec87cdabb3b3a4c11e138ba29a4bCAS | 15281812PubMed |
[41] B. R. Wood, A. Hermelink, P. Lasch, K. R. Bambery, G. T. Webster, M. A. Khiavi, B. M. Cooke, S. Deed, D. Naumann, D. McNaughton, Analyst 2009, 134, 1119.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVSnu7k%3D&md5=78576133a7932c5656bf0ef92c8999aaCAS | 19475137PubMed |
[42] B. R. Wood, S. J. Langford, B. M. Cooke, J. Lim, F. K. Glenister, D. McNaughton, FEBS Lett. 2003, 554, 247.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovVensb8%3D&md5=1fe809e0ac655f9178d42668731631b5CAS | 14623074PubMed |
[43] E. Hanssen, C. Knoechel, N. Klonis, N. Abu-Bakar, S. Deed, M. LeGros, C. Larabell, L. Tilley, J. Struct. Biol. 2011, 173, 161.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFCqur%2FI&md5=9fe7ffc073649567a4b5c4634ef9b05dCAS | 20826218PubMed |
[44] S. Pagola, P. W. Stephens, D. S. Bohle, A. D. Kosar, S. K. Madsen, Nature 2000, 404, 307.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXit1ansLc%3D&md5=1ad947457549a6486029a5b0894cef43CAS | 10749217PubMed |
[45] A. Bonifacio, S. Finaurini, C. Krafft, S. Parapini, D. Taramelli, V. Sergo, Anal. Bioanal. Chem. 2008, 392, 1277.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Wrs7zE&md5=526a9b10d96ec40282ad24956e460f25CAS | 18836854PubMed |
[46] G. T. Webster, K. A. de Villiers, T. J. Egan, S. Deed, L. Tilley, M. J. Tobin, K. R. Bambery, D. McNaughton, B. R. Wood, Anal. Chem. 2009, 81, 2516.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivFOmtbg%3D&md5=8ffa0c166c68fb00991cf2b3e30f1389CAS | 19278236PubMed |