Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Flowery Ni Microcrystals Consisting of Star-shaped Nanorods: Facile Synthesis, Formation Mechanism and Magnetic Properties

Hao Li A B , Jinyun Liao A , Zhen Jin A , Xibin Zhang A , Xiuxian Lu A , Jinjie Liang A , Yufa Feng A and Shiwen Yu A
+ Author Affiliations
- Author Affiliations

A Department of Chemical Engineering, Huizhou University, Huizhou, Guangdong, 516007, China.

B Corresponding author. Email addresses: lihao180@126.com

Australian Journal of Chemistry 64(11) 1494-1500 https://doi.org/10.1071/CH11127
Submitted: 31 March 2011  Accepted: 18 July 2011   Published: 16 November 2011

Abstract

Flowerlike Ni microcrystals composed of star-shaped Ni nanorods with a diameter of ~200 nm were fabricated by a facile chemical reduction process, in which ethylenediamine tetraacetic acid sodium (EDTA) was used as complexant to assist in the formation of the flowery shape of the sample. The products were characterized by X-ray diffractometer, scanning electron microscopy, energy-dispersive X-ray spectroscopy and superconducting quantum interference device magnetometer. Scanning electron microscopy images indicated the typical size of the flowery Ni microcrystals was 2–3 μm and the length of the star-shaped Ni nanorods was in the hundreds of nanometers up to micron scale. The X-ray diffraction pattern showed the Ni microcrystals were present in the face-centred cubic phase and magnetic measurement results demonstrated the greatly enhanced coercivity of the sample (168.5 Oe) at room temperature. Based on the evolution of the structure and the morphology of products with increasing reaction time, a possible formation mechanism was proposed to illustrate the growth of the flower-like Ni architecture.


References

[1]  J. Ye, Q.-W. Chen, H.-P. Qi, N. Tao, Cryst. Growth Des. 2008, 8, 2464.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntVynuro%3D&md5=5627f348b1ac2087d0cb0f69f544b351CAS |

[2]  Q. Liu, X. Guo, Y. Li, W. Shen, J. Phys. Chem. C 2009, 113, 3436.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFWgtL4%3D&md5=576adde5636cff592aca3574b3033234CAS |

[3]  Z. An, S. Pan, J. Zhang, J. Phys. Chem. C 2009, 113, 1346.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVWisQ%3D%3D&md5=d23f243aa3919d77bccf32367c5b26e1CAS |

[4]  B. I. Kharisov, Recent Pat. Nanotechnol. 2008, 2, 190.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWgu7bO&md5=8b8395c65a118219f53af1d156006994CAS |

[5]  H. Qi, W. Zhang, X. Wang, H. Li, J. Chen, K. Peng, M. Shao, Catal. Commun. 2009, 10, 1178.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1Khtrc%3D&md5=3d5679a8fef20bdb929271622c0393e9CAS |

[6]  H. Li, S. Liao, J. Phys. D Appl. Phys. 2008, 41, 065004.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  L. Hong, Q. Li, H. Lin, Y. Li, Mater. Res. Bull. 2009, 44, 1201.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVClsLg%3D&md5=e5d7037605064b46da65e55f5f2d0ad9CAS |

[8]  L. Liu, J. Guan, W. Shi, Z. Sun, J. Zhao, J. Phys. Chem. C 2010, 114, 13565.
         | 1:CAS:528:DC%2BC3cXptFOqtrg%3D&md5=3211a3e71761171e95cde63b39ff7889CAS |

[9]  Y. Liu, Y. Chu, Y. Zhuo, M. Li, L. Li, L. Dong, Cryst. Growth Des. 2007, 7, 467.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFOlu74%3D&md5=e4b50edde169e06916c40ba01e4ef723CAS |

[10]  Y. Luo, S. Li, Q. Ren, J. Liu, L. Xing, Y. Wang, Y. Yu, Z. Jia, J. Li, Cryst. Growth Des. 2007, 7, 87.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12qtrvK&md5=8a6cd78ca8991f9eb4c5fa6520928970CAS |

[11]  C. Yan, D. Xue, L. Zou, X. Yan, W. Wang, J. Cryst. Growth 2005, 282, 448.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFyjtLg%3D&md5=c78ea37c3f0289060796e25a8e9da299CAS |

[12]  S. Sarkar, M. Pradhan, A. K. Sinha, M. Basu, Y. Negishi, T. Pal, Inorg. Chem. 2010, 49, 8813.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFarsLbK&md5=a2d08f85f4c4d5f066118d8d5ccb94c9CAS |

[13]  F. Chen, R. Zhou, L. Yang, N. Liu, M. Wang, H. Chen, J. Phys. Chem. C 2008, 112, 1001.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFSitw%3D%3D&md5=c6adca1d78c448da560a870a376c36e6CAS |

[14]  S. Ma, J. Liang, J. Zhao, B. Xu, CrystEngComm 2010, 12, 750.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFWju7g%3D&md5=1f34135a449dd91974cc3589f533b786CAS |

[15]  D. Zhang, G. Li, J. C. Yu, Cryst. Growth Des. 2009, 9, 2812.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVCgsLk%3D&md5=098782038712b967a9ad9f95261cc0bbCAS |

[16]  C.-M. Liu, Y.-C. Tseng, C. Chen, M.-C. Hsu, T.-Y. Chao, Y.-T. Cheng, Nanotechnology 2009, 20, 415703.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  G. Meng, A. Cao, J. Y. Cheng, A. Vijayaraghavan, Y. J. Jung, M. Shima, P. M. Ajayan, J. Appl. Phys. 2005, 97, 064303.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  R. Xu, T. Xie, Y. Zhao, Y. Li, Cryst. Growth Des. 2007, 7, 1904.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotFGntrg%3D&md5=01968b13c0ede9ba5d74f18e805b6bc1CAS |

[19]  Y. Leng, Y. Zhang, T. Liu, M. Suzuki, X. Li, Nanotechnology 2006, 17, 1797.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkslOktrY%3D&md5=f7bca54d22964c7096d732de5d0d3f8dCAS |

[20]  A. Mathew, N. Munichandraiah, G. M. Rao, Mater. Sci. Eng. B 2009, 158, 7.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtF2ks7g%3D&md5=6d49c53fb576c3ccd548e52d6ecd86bbCAS |

[21]  X. Ni, L. Chen, H. Zheng, D. Zhang, Q. Zhao, J. Song, Chem. Lett. 2004, 33, 1564.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFait7fP&md5=ba0ed1758c17d8080b46f4bf3b00f781CAS |

[22]  X. Ni, Q. Zhao, H. Zheng, B. Li, J. Song, D. Zhang, X. Zhang, Eur. J. Inorg. Chem. 2005, 4788.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlalt7jN&md5=6f9686b65d54d2b867f48049d6811926CAS |

[23]  X. Ni, Q. Zhao, D. Zhang, X. Zhang, H. Zheng, J. Phys. Chem. C 2007, 111, 601.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12itbbJ&md5=9e5438e3523dec1d4bbd34040505046aCAS |

[24]  W. Zhou, L. Guo, L. He, C. P. Chen, Phys. Status Solidi (a) 2008, 205, 1109(a).
         | Crossref | GoogleScholarGoogle Scholar |

[25]  P. Li, N. Wang, R. Wang, Eur. J. Inorg. Chem. 2010, 2261.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  W. Zhou, Z. Zhou, L. Zhang, L. Guo, Y. Du, Y. Lv, J. Nanosci. Nanotechnol. 2010, 10, 5004.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlyqtr7N&md5=7982d9cb4a2c5b3e41812c0e9562d91aCAS |

[27]  S. Senapati, S. K. Srivastava, S. B. Singh, K. Biswas, Cryst. Growth Des. 2010, 10, 4068.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVehsrfL&md5=f505a2b7620c80390d0a9351bc1cd4e5CAS |

[28]  X. Yang, F. Lai, J. Zhang, Q. Chen, J. Phys. Chem. C 2009, 113, 7123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVGltLw%3D&md5=0705f0bc32079418d9d663c9783bb709CAS |

[29]  H. Li, Z. Jin, H. Song, S. Liao, J. Magn. Magn. Mater. 2010, 322, 30.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Ohu73N&md5=9efc49e0ad2106ec41318be256ab9c28CAS |

[30]  S. Zhang, H. C. Zeng, Chem. Mater. 2010, 22, 1282.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  Y. Zhang, Y. Zhang, Z. Wang, D. Li, T. Cui, W. Liu, Z. Zhang, Eur. J. Inorg. Chem. 2008, 2733.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvFCmsLk%3D&md5=3fa8d410e17ac80841204a8ab63b737dCAS |

[32]  J. A. Dean, Lange’s Chemistry Handbook, 13th edn 1985, pp. 8.90–8.97 (McGraw-Hill Book Company: New York).

[33]  P. Alumaa, J. Pentchuk, Chromatographia 1998, 47, 77.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhslakt7k%3D&md5=cddb2ce3c4e2432beddeefc462b21d7cCAS |

[34]  H. Wang, X. Kou, L. Zhang, J. Li, Mater. Res. Bull. 2008, 43, 3529.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12lsb3F&md5=1a7598010eac7170bb8b331aea3c2efaCAS |