pH-Dependent Assembly of Reduced Polyoxomolybdenum Phosphates Modified by MnII
Jing Lu A B , Hou-Ting Liu A , Hao Song A , Su-Na Wang A B , Da-Qi Wang A and Xian-Xi Zhang AA Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
B Corresponding authors. Email: lujing@lcu.edu.cn; wangsuna@lcu.edu.cn
Australian Journal of Chemistry 64(11) 1501-1508 https://doi.org/10.1071/CH11134
Submitted: 6 April 2011 Accepted: 18 July 2011 Published: 16 November 2011
Abstract
Three reduced polyoxomolybdenum(v) phosphates modified by MnII: (Hen)(H2en){Mn(H2O)[Mn0.5Mo6(HPO4)3(PO4)(OH)3O12]}·2H2O (1) (en = ethylenediamine), (en)(Hen)4{Mn(H2O)[MnMo12(H2PO4)3(HPO4)4(PO4)(OH)6O24]}·3.5H2O (2), and [H7(en)Mn2.5P4Mo6O31(H2O)3]·2.5H2O (3) were synthesized through the hydrothermal reaction at different pH values. Compound 1 exhibits a 3-D framework; each basic [Mn(P4Mo6O31)2] unit coordinates with eight MnII ions. Compound 2 contains two kinds of [Mn(P4Mo6O31)2] basic units, which are linked by MnII ions to form a 2-D network. For compound 3, each basic [Mn(P4Mo6O31)2] unit is modified by 12 MnII ions and exhibits a 3-D framework. It was established that the pH of the reaction and the amount of ethanediamine play very important roles in the assembly of polyoxometalate-based compounds. The pH value determines the electron density of polyoxometalate and the degree of en protonation, which affect the coordination ability of polyoxometalates and result in different structures. Compounds 1–3 display weak antiferromagnetic coupling.
References
[1] Y. Lu, Y. Xu, E. B. Wang, J. Lu, C. W. Hu, L. Xu, Cryst. Growth Des. 2005, 5, 257.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltl2mtr8%3D&md5=16869eadda9a67ee009ab0f5c44effe6CAS |
[2] W.-J. Chang, Y.-C. Jiang, S.-L. Wang, K.-H. Lii, Inorg. Chem. 2006, 45, 6586.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xntl2hu74%3D&md5=1b4b0e0c721e145f5fdd068d5573802eCAS |
[3] J. Wang, J. Zhao, P. Ma, J. Ma, L. Yang, Y. Bai, M. Li, J. Niu, Chem. Commun. 2009, 2362.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslGkt70%3D&md5=497e015718679cfdcd62a6b1eafa0befCAS |
[4] A. Guesdon, M. M. Borel, A. Leclaire, B. Raveau, Chemistry 1997, 3, 1797.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnvVyquro%3D&md5=5d356b177bf8e705ac94e2a31321cddbCAS |
[5] R. C. Haushalter, F. W. Lai, Angew. Chem. Int. Ed. Engl. 1989, 28, 743.
| Crossref | GoogleScholarGoogle Scholar |
[6] L. A. Mundi, R. C. Haushalter, Inorg. Chem. 1992, 31, 3050.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XkvVahtL0%3D&md5=be5373471533cbd2c474abec7235a230CAS |
[7] W. Yang, C. Lu, C. Wu, S. Lu, D. Wu, H. Zhuang, J. Cluster Sci. 2002, 13, 43.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksFOntLs%3D&md5=13cbda9dcc9b050d2265e7a0fa20fa00CAS |
[8] C. Streb, D.-L. Long, L. Cronin, Chem. Commun. 2007, 471.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotFKqsQ%3D%3D&md5=ecdce56fa461bceb489fa15f5495a5faCAS |
[9] X. Zhang, J.-Q. Xu, J.-H. Yu, J. Lu, Y. Xu, Y. Chen, T.-G. Wang, X.-Y. Yu, Q.-F. Yang, Q. Hou, J. Solid State Chem. 2007, 180, 1949.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFCrtrc%3D&md5=1e4ab780ef8f0fab7472f7aae3bea991CAS |
[10] C. Streb, D.-L. Long, L. Cronin, CrystEngComm 2006, 8, 629.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVKjs7w%3D&md5=68b682644a19baf32eb0c30fe24feecbCAS |
[11] H.-X. Guo, X.-Z. Li, W. Weng, Inorg. Chem. Commun. 2010, 13, 909.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvFKisLg%3D&md5=2b341894c4e60443a06886586ed52820CAS |
[12] X. He, P. Zhang, T. Y. Song, Z. C. Mu, J. H. Yu, Y. Wang, J. N. Xu, Polyhedron 2004, 23, 2153.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1Kqu7Y%3D&md5=154e7461bb32aa48339eace55760e42aCAS |
[13] L. A. Meyer, R. C. Haushalter, Inorg. Chem. 1993, 32, 1579.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktl2gu7g%3D&md5=9843ecd605e552f5429c82d64cd079d9CAS |
[14] Y. H. Sun, X. B. Cui, J. Q. Xu, L. Ye, Y. Li, J. Lu, H. Ding, H. Y. Bie, J. Solid State Chem. 2004, 177, 1811.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktVWqsrs%3D&md5=ec2c1bf88c8139e34da218412f9ba602CAS |
[15] Y. S. Zhou, L. J. Zhang, H. K. Fun, J. L. Zuo, I. A. Razak, S. Chantrapromma, X. Z. You, New J. Chem. 2001, 25, 1342.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsVKrtbw%3D&md5=e790511a1e3dc6d292e730cb0a07aab6CAS |
[16] F. Yu, X.-J. Kong, Y.-Y. Zheng, Y.-P. Ren, L.-S. Long, R.-B. Huang, L.-S. Zheng, Dalton Trans. 2009, 9503.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWhtbfM&md5=7615f26fe478c1931d85904943e9c64dCAS |
[17] H. Yang, S. Guo, J. Tao, J. Lin, R. Cao, Cryst. Growth Des. 2009, 9, 4735.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1Sqsrw%3D&md5=868a0cb35444ff6a67c2e8bfa25687b5CAS |
[18] Q. Wu, Y.-G. Li, Y.-H. Wang, R. Clérac, Y. Lu, E.-B. Wang, Chem. Commun. 2009, 5743.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGns7bN&md5=21b1a1b7025cf0be4938d6815bcd4d51CAS |
[19] Q. Wu, Y.-G. Li, Y.-H. Wang, E.-B. Wang, Z.-M. Zhang, R. Clérac, Inorg. Chem. 2009, 48, 1606.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlyjtg%3D%3D&md5=413361f598c5e8a5d61e116296f017cfCAS |
[20] Q. Sun, H. Zhang, C. Huang, Q. Sun, R. Sun, Y. Wang, Acta Crystallogr. Sect. E Struct. Rep. Online 2003, 59, m729.
| Crossref | GoogleScholarGoogle Scholar |
[21] J. Lu, H. Song, D.-Q. Wang, M.-J. Niu, Acta Crystallogr. Sect. E Struct. Rep. Online 2010, 66, m599.
| Crossref | GoogleScholarGoogle Scholar |