Reaction of N-Acyloxy-N-alkoxyamides with Biological Thiol Groups †
Stephen A. Glover A B and Meredith Adams AA Department of Chemistry, School of Science and Technology, University of New England, Armidale, NSW 2351, Australia.
B Corresponding author. Email: sglover@une.edu.au
Australian Journal of Chemistry 64(4) 443-453 https://doi.org/10.1071/CH10470
Submitted: 21 December 2010 Accepted: 17 February 2011 Published: 18 April 2011
Abstract
Mutagenic N-acyloxy-N-alkoxyamides 1 react with thiols by an SN2 process at nitrogen with displacement of carboxylate. They react with glutathione 4 in [D6]DMSO/D2O and methyl and ethyl esters of cysteine hydrochloride, 11 and 12, in [D4]methanol but the intermediate N-alkoxy-N-(alkylthio)amides undergo a rapid substitution reaction at sulfur by a second thiol molecule to give hydroxamic esters and disulfides. Arrhenius activation energies and entropies of activation obtained for a series of different N-benzyloxy-N-(4-substitutedbenzoyloxy)benzamides 13–17 were similar to those found for the SN2 reaction of the same series with N-methylaniline. Entropies of activation were strongly negative in keeping with polar separation and attendant solvation in the transition state, and in keeping with this, bimolecular reaction rate constants at 298 K correlated with Hammett σ constants with a positive ρ-value of 1.1. The structure of model N-methoxy-N-(methylthio)acetamide has been computed at the B3LYP/6–31G(d) level and exhibits properties atypical of other anomeric amides with more electronegative atoms at nitrogen. Relative to N,N-bisoxyl substitution, the combination of a sulfur and an oxygen atom at the amide nitrogen results in a relatively small reduction in amide resonance.
References
[1] S. A. Glover, in Advances in Physical Organic Chemistry (Ed. J. Richard) 2008, Vol. 42, pp. 35–123 (Elsevier: London).[2] L. E. Andrews, A. M. Bonin, L. E. Fransson, A.-M. E. Gillson, S. A. Glover, Mutat. Res. 2006, 605, 51.
| 1:CAS:528:DC%2BD28XltFCqtLg%3D&md5=f2265a8daf0b741c9cf24ca8d729187eCAS | 16698311PubMed |
[3] L. E. Andrews, T. M. Banks, A. M. Bonin, S. F. Clay, A.-M. E. Gillson, S. A. Glover, Aust. J. Chem. 2004, 57, 377.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivVKhsL4%3D&md5=1e7c3a378fda330e952a995cc7a820a3CAS |
[4] T. M. Banks, A. M. Bonin, S. A. Glover, A. S. Prakash, Org. Biomol. Chem. 2003, 1, 2238.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFWqsrc%3D&md5=c681e2d39dafbee64a13a3e6629b3223CAS | 12945693PubMed |
[5] A. M. Bonin, T. M. Banks, J. J. Campbell, S. A. Glover, G. P. Hammond, A. S. Prakash, C. A. Rowbottom, Mutat. Res. 2001, 494, 115.
| 1:CAS:528:DC%2BD3MXksVGqsbs%3D&md5=81794de5c106a4e31f80a4a1f3765181CAS | 11423351PubMed |
[6] S. A. Glover, in The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids, Part 2 (Eds Z. Rappoport, J. F. Liebman) 2009, pp. 839–923 (Wiley: Chichester, UK).
[7] S. A. Glover, Tetrahedron 1998, 54, 7229.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjvFWktL4%3D&md5=01fdd2e15e33ea4af738b03d084bffa3CAS |
[8] J. J. Campbell, S. A. Glover, G. P. Hammond, C. A. Rowbottom, J. Chem. Soc., Perkin Trans. 2 1991, 2067.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhtVGgtbw%3D&md5=21cd4afd075441b06002c3a3e8367608CAS |
[9] A. M. Bonin, S. A. Glover, G. P. Hammond, J. Chem. Soc., Perkin Trans. 2 1994, 1173.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktlCmt7o%3D&md5=75a2b716be978aa34b30c9302e6f5f2bCAS |
[10] J. J. Campbell, S. A. Glover, J. Chem. Res. (S) 1999, 8, 474.
| Crossref | GoogleScholarGoogle Scholar |
[11] J. J. Campbell, S. A. Glover, J. Chem. Res. (M) 1999, 8, 2075.
[12] S. A. Glover, Arkivoc, 2001, Part xii, Issue in Honour of O. S. Tee. http://www.arkat-usa.org/get-file/19825/, published on the web 29/1/2001.
[13] S. A. Glover, G. Mo, J. Chem. Soc., Perkin Trans. 2 2002, 1728.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsVeitL4%3D&md5=9f7780c6dfc4a1ffaa636df601ba26baCAS |
[14] S. A. Glover, G. P. Hammond, A. M. Bonin, J. Org. Chem. 1998, 63, 9684.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsFKls7s%3D&md5=d243f4f7bff6deec36a2cb886b48a050CAS |
[15] K. L. Cavanagh, S. A. Glover, H. L. Price, R. R. Schumacher, Aust. J. Chem. 2009, 62, 700.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotl2muro%3D&md5=6075bce9ae1b65547d2fcf973c3c402fCAS |
[16] T. M. Banks, PhD Thesis, Reactivity, Mutagenicity and DNA damage of N-Acyloxy-N-alkoxyamides. University of New England, Armidale, 2003.
[17] J. J. Campbell, S. A. Glover, J. Chem. Soc., Perkin Trans. 2 1992, 1661.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitF2jug%3D%3D&md5=f6b6756ff48f9e39086a9800cdbf4cacCAS |
[18] N. De Kimpe, R. Verhé, The Chemistry of α-Haloketones, α-Haloaldehydes and α-Haloimines (Eds S. Patai, Z. Rappoport) 1988, p. 38 (John Wiley & Sons: Chichester, UK).
[19] J. W. Thorpe, J. Warkentin, Can. J. Chem. 1973, 51, 927.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXltVCmsr4%3D&md5=2a134b3421234bf23103bc90fae5b678CAS |
[20] J. Vina, Glutathione: Metabolism and Physiological Functions 1990 (CRC Press, Inc.: Boca Raton, FL).
[21] S. C. Mitchell, Biological Interactions of Sulfur Compounds 1996 (Taylor & Francis: London).
[22] A. L. Fluharty, in The Chemistry of the Thiol Group, Part 2 (Ed. S. Patai) 1974, p. 615 (John Wiley and Sons: London).
[23] K. Zhang, P. Mack, K. P. Wong, Int. J. Oncol. 1998, 12, 871.
| 1:CAS:528:DyaK1cXitlejt7g%3D&md5=75faf6242b9e1f7a0309f3435dc74345CAS | 9499449PubMed |
[24] A. Ohno, S. Oae, in Organic Chemistry of Sulfur (Ed. S. Oae) 1977, p. 159 (Plenum Press: New York).
[25] S. A. Glover, Truly Australian – the HERON reaction. Chemistry in Australia 2007, 74(7), 6.
[26] S. A. Glover, in Merck Index, Organic Name Reactions ONR-43 (Ed. M. J. O’Neil) 2006 (Merck & Co., Inc.: Whitehouse Station, NJ).
[27] S. A. Glover, A. Rauk, J. M. Buccigross, J. J. Campbell, G. P. Hammond, G. Mo, L. E. Andrews, A.-M. E. Gillson, Can. J. Chem. 2005, 83, 1492.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvVarsQ%3D%3D&md5=9be91105428d0aded2995870de456cdcCAS |
[28] S. A. Glover, G. Mo, A. Rauk, Tetrahedron 1999, 55, 3413.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhslyhsro%3D&md5=a515841f6263b48739e5e69d72dd6437CAS |
[29] J. M. Buccigross, S. A. Glover, J. Chem. Soc., Perkin Trans. 2 1995, 595.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktlCmsLw%3D&md5=451029605d187462eae10d2d4ea22c29CAS |
[30] J. D. Dunitz, X-Ray Analysis and Structure of Organic Molecules 1979 (Cornell University Press: London).
[31] F. K. Winkler, J. D. Dunitz, J. Mol. Biol. 1971, 59, 169.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXkvFahtrY%3D&md5=16363e56ca03fd5dcd55b80b3025519eCAS | 5283751PubMed |
[32] A. Rauk, S. A. Glover, J. Org. Chem. 1996, 61, 2337.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xhs1Cgs7o%3D&md5=a846cc26e5db0ef71b7444e52b16b766CAS |
[33] A.-M. E. Gillson, S. A. Glover, D. J. Tucker, P. Turner, Org. Biomol. Chem. 2003, 1, 3430.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsFGku7s%3D&md5=02b5dcbf7d2a4d391185bae8965656c2CAS | 14584807PubMed |
[34] A. P. Scott, L. Radom, J. Phys. Chem. 1996, 100, 16502.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xls12mu78%3D&md5=10e6b894090a25ecb5da05b3530a75dfCAS |
[35] J. M. Buccigross, S. A. Glover, G. P. Hammond, Aust. J. Chem. 1995, 48, 353.
| 1:CAS:528:DyaK2MXktFGjs7o%3D&md5=f34f7661111afb2bfce18fc8c5181d52CAS |
[36] S. A. Glover, A. Rauk, J. Org. Chem. 1999, 64, 2340.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhs1yit7g%3D&md5=378384d21803e815ee05e260237946d9CAS |
[37] J. P. Johns, A. van Losenoord, C. Mary, P. Garcia, D. Pankhurst, A. Rosser, S. A. Glover, Aust. J. Chem. 2010, 63, 1717.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFaqsbvF&md5=c84bd69c33fe26fe1a7e15eb1a06740dCAS |
[38] Spartan ’08 for Macintosh 2008, Ver. 1.2.1 (Wavefunction Inc.: Irvine, CA).