Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

On the Development of Fluidized Bed Chemical Vapour Deposition for Large-Scale Carbon Nanotube Synthesis: Influence of Synthesis Temperature

Chee Howe See A and Andrew T. Harris A B
+ Author Affiliations
- Author Affiliations

A Laboratory for Sustainable Technology, School of Chemical and Biomolecular Engineering, University of Sydney, NSW 2006, Australia.

B Corresponding author. Email: a.harris@usyd.edu.au

Australian Journal of Chemistry 60(7) 541-546 https://doi.org/10.1071/CH06398
Submitted: 27 October 2006  Accepted: 10 April 2007   Published: 9 July 2007

Abstract

The absence of large-scale carbon nanotube synthesis technology (which we define as being of the order of 10 000 tonnes per plant per year) is limiting research and development activities across the sector. We contend that fluidized bed chemical vapour deposition (FBCVD) is the most promising technology for large-scale, low-cost, carbon nanotube synthesis. In this work, multi-walled carbon nanotubes were synthesized on alumina-supported iron, cobalt, or nickel catalysts by catalytic chemical vapour deposition in a 0.5 kg h–1 FBCVD reactor, using ethylene as a carbon source. The carbon nanotube yield was shown to increase with an increase in synthesis temperature from 3.3% at 550°C to 87.6% at 900°C. At higher synthesis temperatures the quality of the nanotubes appeared to improve, although further experiments are required to quantify this within statistically significant limits.


Acknowledgments

C. H. See gratefully acknowledges the financial support of the Commonwealth of Australia for providing an Endeavour International Postgraduate Scholarship.


References


[1]   P. Avouris, R. Martel, V. Derycke, J. Appenzeller, Physica B (Amsterdam) 2002, 323,  6.
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  open url image1