Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Functional dioecy in Gleditsia amorphoides (Fabaceae)

María Carolina Cerino A C D , Damián César Castro B C , Geraldina Alicia Richard A C , Eliana de Luján Exner A and José Francisco Pensiero A C
+ Author Affiliations
- Author Affiliations

A Universidad Nacional del Litoral, Facultad de Ciencias Agrarias, Cátedra de Botánica Sistemática Agronómica, 86-Kreder 2805, 3080 HOF Esperanza, Argentina.

B Universidad Nacional del Litoral, Facultad de Ciencias Agrarias, Cátedra de Cultivos Intensivos, Cátedra de Dasonomía, 86-Kreder 2805, 3080 HOF Esperanza, Argentina.

C Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina.

D Corresponding author. Email: mccerino@fca.unl.edu.ar

Australian Journal of Botany 66(1) 85-93 https://doi.org/10.1071/BT16185
Submitted: 20 September 2016  Accepted: 13 December 2017   Published: 5 February 2018

Abstract

The genus Gleditsia (Fabaceae) comprises woody shrubs and trees that grow in temperate and subtropical regions around the world. This genus is characterised by sexual polymorphism and functionally unisexual flowers. Gleditsia amorphoides is the southernmost species of the genus, and is widely used as a source of timber and derived products for industrial applications (galactomannans are extracted from its seeds and saponins are derived from its fruits). The species is endemic to the Chaquenean Forest of South America. It is described as morphologically androdioecious, with male and perfect flowers appearing on different plants. In the current study, we characterised floral morphology, experimentally tested the breeding system and analysed flower visitors. Results indicated that G. amorphoides staminate flowers produce viable pollen grains and that perfect flowers have a functional gynoecium and empty anthers, where pollen abortion occurs early in floral development. The species relies on outcrossing, which depends mainly on pollen carried by insect pollinators, to produce seeds and fruits. We conclude that G. amorphoides is functionally dioecious, with staminate and pistillate floral morphs.

Additional keywords: Caesalpinioideae, Chaquenean Forest, plant reproduction, sexual polymorphism, unisexuality.


References

Ainsworth C (2000) Boys and girls come out to play: the molecular biology of dioecious plants. Annals of Botany 86, 211–221.
Boys and girls come out to play: the molecular biology of dioecious plants.Crossref | GoogleScholarGoogle Scholar |

Anderson GJ, Symon DE (1989) Functional dioecy and andromonoecy in Solanum. Society for the Study of Evolution 43, 204–219.

Barrett SCH (2002) The evolution of plant sexual diversity. Nature Reviews. Genetics 3, 274–284.
The evolution of plant sexual diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtFOrtrk%3D&md5=57c17e18c3d5dc1a652849dbd66dcea9CAS |

Barrett SCH, Hough J (2013) Sexual dimorphism in flowering plants. Journal of Experimental Botany 64, 67–82.
Sexual dimorphism in flowering plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvV2gsbvE&md5=2e76a485b4a48c8dfefb616994cca364CAS |

Bruneau A, Klitgaard BB, Prenner G, Fougère-Danezan M, Tucker SC (2014) Floral evolution in the Detarieae (Leguminosae): phylogenetic evidence for labile floral development in an early-diverging legume lineage. International Journal of Plant Sciences 175, 392–417.
Floral evolution in the Detarieae (Leguminosae): phylogenetic evidence for labile floral development in an early-diverging legume lineage.Crossref | GoogleScholarGoogle Scholar |

Burkart A, Troncoso de Burkart NS, Bacigalupo NM (1987) ‘Flora Ilustrada de Entre Ríos (Argentina). Dicotiledóneas Metaclamídeas: Salicales a Rosales (incluso Leguminosas).’ (Colección Científica, Instituto Nacional de Tecnología Agropecuaria: Buenos Aires, Argentina)

Charlesworth D (1984) Androdioecy and the evolution of dioecy. Biological Journal of the Linnean Society. Linnean Society of London 22, 333–348.
Androdioecy and the evolution of dioecy.Crossref | GoogleScholarGoogle Scholar |

Charlesworth D, Guttman DS (1999) The evolution of dioecy and plant sex chromosome systems. In ‘Sex determination in plants’. (Ed. CC Ainsworth) pp. 25–49. (BIOS: Oxford, UK)

Di Rienzo JA, Guzmán AW, Casanoves FA (2002) A multiple-comparisons method based on the distribution of the root node distance of a binary tree. Journal of Agricultural Biological & Environmental Statistics 7, 129–142.
A multiple-comparisons method based on the distribution of the root node distance of a binary tree.Crossref | GoogleScholarGoogle Scholar |

Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2011) ‘InfoStat, versión 2011.’ (Grupo InfoStat, FCA, Universidad Nacional de Córdoba: Córdoba, Argentina)

Freeman DC, Lovett Doust J, El-Keblawy A, Miglia KJ, Durant McArthur E (1997) Sexual specialization and inbreeding avoidance in the evolution of dioecy. Botanical Review 63, 65–92.

Gordon D (1966) A revision of the genus Gleditsia (Leguminosae). PhD dissertation, Indiana University, Bloomington, IN.

Hoffman MT (1992) Functional dioecy in Echinocereus coccineus (Cactaceae): breeding systems, sex ratios, and geographic range of floral dimorphism. American Journal of Botany 79, 1382–1388.
Functional dioecy in Echinocereus coccineus (Cactaceae): breeding systems, sex ratios, and geographic range of floral dimorphism.Crossref | GoogleScholarGoogle Scholar |

Hokche O, Ramirez N (1990) Pollination ecology of seven species of Bauhinia L. (Leguminosae: Caesalpinioideae). Annals of the Missouri Botanical Garden 77, 559–572.
Pollination ecology of seven species of Bauhinia L. (Leguminosae: Caesalpinioideae).Crossref | GoogleScholarGoogle Scholar |

Kalin Arroyo MT (1981) Breeding systems and pollination biology in Leguminosae. In ‘Advances in legume systematic’. (Eds RM Polhill, PH Raven) pp. 733–769. (Royal Botanic Gardens, Kew: London)

Knapp S, Persson V, Blackmore S (1998) Pollen morphology and functional dioecy in Solanum (Solanaceae). Plant Systematics and Evolution 210, 113–139.
Pollen morphology and functional dioecy in Solanum (Solanaceae).Crossref | GoogleScholarGoogle Scholar |

Lepart J, Dommée B (1992) Is Phillyrea angustifolia L. (Oleaceae) an androdioecious species? Botanical Journal of the Linnean Society 108, 375–387.
Is Phillyrea angustifolia L. (Oleaceae) an androdioecious species?Crossref | GoogleScholarGoogle Scholar |

Lewis JP (1981) La vegetación de la Provincia de Santa Fe. Sociedad Argentina de Estudios Geográficos GAEA 9, 121–148.

Lloyd DG (1975) The maintenance of gynodioecy and androdioecy in angiosperms. Genetica 45, 325–339.
The maintenance of gynodioecy and androdioecy in angiosperms.Crossref | GoogleScholarGoogle Scholar |

Lloyd DG, Webb CJ (1977) Secondary sex characters in plants. Botanical Review 43, 177–216.
Secondary sex characters in plants.Crossref | GoogleScholarGoogle Scholar |

Mayer SS, Charlesworth D (1991) Cryptic dioecy in flowering plants. Trends in Ecology & Evolution 6, 320–325.
Cryptic dioecy in flowering plants.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7hsVersw%3D%3D&md5=874ef6ebaaab270cb6d5e042cd3eff7eCAS |

Obeso JR (2002) The costs of reproduction in plants. New Phytologist 155, 321–348.
The costs of reproduction in plants.Crossref | GoogleScholarGoogle Scholar |

Pensiero JF, Gutiérrez HF, Luchetti AM, Exner E, Kern V, Brnich E, Oakley L, Prado D, Lewis JP (2005) Flora vascular de la provincia de Santa Fe. ‘Claves para el reconocimiento de las familias y géneros. Catálogo sistemático de las especies’. (Universidad Nacional del Litoral: Santa Fe, Argentina)

Perduca MJ, Spotti MJ, Santiago LG, Judis MA, Rubiolo AC, Carrara CR (2013) Rheological characterization of the hydrocolloid from Gleditsia amorphoides seeds. Lebensmittel-Wissenschaft + Technologie 51, 143–147.
Rheological characterization of the hydrocolloid from Gleditsia amorphoides seeds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVCrsr3N&md5=8f615d6cb6f949b32d4ed5d259e49a7cCAS |

Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2011) ‘nlme: linear and nonlinear mixed effects models. R package version 3.1–131.’ Available at https://CRAN.R-project.org/package=nlme [verified 18 December 2017].

Prola G (2011) ‘Gleditsia amorphoides seedless pod extract and its use as an agricultural adjuvant.’ US patent application 13/186, 664, 20 July.

R Core Team (2011) ‘R: a language and environment for statistical computing.’ (R Foundation for Statistical Computing: Vienna)

Raven PH, Polhill RM (1981) Biogeography of the Leguminosae. In ‘Advances in legume systematic’. (Eds RM Polhill, PH Raven) pp. 27–34. (Royal Botanic Gardens, Kew: London)

Richards AJ (1986) ‘Plant breeding systems.’1st edn. (George Allen and Unwin: London).

Rothman B, Rique T (1959) Las gomas galactomananos y la goma de Espina Corona en la industria alimenticia. Revista de la Sociedad Química de México 3, 379–391.

Schnabel A, Hamrick JL (1990) Organization of genetic diversity within and among populations of Gleditsia triacanthos (Leguminosae). American Journal of Botany 77, 1060–1069.
Organization of genetic diversity within and among populations of Gleditsia triacanthos (Leguminosae).Crossref | GoogleScholarGoogle Scholar |

Schnabel A, Wendel JF (1998) Cladistic biogeography of Gleditsia (Leguminosae) based on NDHF and RPL16 chloroplast gene sequences. American Journal of Botany 85, 1753–1765.
Cladistic biogeography of Gleditsia (Leguminosae) based on NDHF and RPL16 chloroplast gene sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXls1Srsw%3D%3D&md5=fc2c88ab04a2f413148a961f3d19df2dCAS |

Strittmatter LI, Negrón-Ortiz V, Hickey RJ (2002) Subdioecy in Consolea spinosissima (Cactaceae): breeding system and embryological studies. American Journal of Botany 89, 1373–1387.
Subdioecy in Consolea spinosissima (Cactaceae): breeding system and embryological studies.Crossref | GoogleScholarGoogle Scholar |

Strittmatter LI, Negrón-Ortiz V, Hickey JR (2006) Comparative microsporangium development in male-fertile and male sterile flowers of Consolea (Cactaceae): when and how does pollen abortion occur. Grana 45, 81–100.
Comparative microsporangium development in male-fertile and male sterile flowers of Consolea (Cactaceae): when and how does pollen abortion occur.Crossref | GoogleScholarGoogle Scholar |

Sun B-L, Zhang Ch-Q, Lowry PP, Wen J (2009) Cryptic dioecy in Nyssa yunnanensis (Nyssaceae), a critically endangered species from tropical eastern Asia. Annals of the Missouri Botanical Garden 96, 672–684.
Cryptic dioecy in Nyssa yunnanensis (Nyssaceae), a critically endangered species from tropical eastern Asia.Crossref | GoogleScholarGoogle Scholar |

Tortorelli LA (2009) ‘Maderas y bosques Argentinos.’ (Orientación Gráfica Editora: Buenos Aires)

Missouri Botanical Garden (2017) Tropicos: Gleditsia inermis L. Available at http://www.tropicos.org/Name/13000997 [Verified 27 January 2017]

Tucker SC (1987) Floral initiation and development in legumes. In ‘Advances in legume systematics’. (Eds CH Stirton) pp. 183–239. (Royal Botanic Gardens, Kew: London)

Tucker SC (1988) Dioecy in Bauhinia resulting from organ suppression. American Journal of Botany 75, 1584–1597.
Dioecy in Bauhinia resulting from organ suppression.Crossref | GoogleScholarGoogle Scholar |

Tucker SC (1991) Helical floral organogenesis in Gleditsia, a primitive Caesalpinioid legume. American Journal of Botany 78, 1130–1149.
Helical floral organogenesis in Gleditsia, a primitive Caesalpinioid legume.Crossref | GoogleScholarGoogle Scholar |

Tucker SC (2000) Floral development and homeosis in Saraca (Leguminosae: Caesalpinioideae: Detarieae). International Journal of Plant Sciences 161, 537–549.
Floral development and homeosis in Saraca (Leguminosae: Caesalpinioideae: Detarieae).Crossref | GoogleScholarGoogle Scholar |

Tucker SC (2003) Floral development in legumes. Plant Physiology 131, 911–926.
Floral development in legumes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisFemtbs%3D&md5=57ead82d79c9a8a6e3a77070fa84a93bCAS |

Ulibarri EA (1997) 32-Fabaceae. In ‘Flora fanerogámica Argentina, proflora CONICET’. (Ed. AT Hunziker) pp. 3–26. (Estudio Sigma: Buenos Aires)

Verdú M (2004) Physiological and reproductive differences between hermaphrodites and males in the androdioecious plant Fraxinus ornus. Oikos 105, 239–246.
Physiological and reproductive differences between hermaphrodites and males in the androdioecious plant Fraxinus ornus.Crossref | GoogleScholarGoogle Scholar |

Verdú M, Montilla AI, Pannell JR (2004) Paternal effects on functional gender account for cryptic dioecy in a perennial plant. Proceedings. Biological Sciences 271, 2017–2023.
Paternal effects on functional gender account for cryptic dioecy in a perennial plant.Crossref | GoogleScholarGoogle Scholar |

Wolf DE, Takebayashi N (2004) Pollen limitation and the evolution of androdioecy from dioecy. American Naturalist 163, 122–137.
Pollen limitation and the evolution of androdioecy from dioecy.Crossref | GoogleScholarGoogle Scholar |

Zarlavsky GE (2014) ‘Histología vegetal, técnicas simples y complejas.’ (Sociedad Argentina de Botánica: Buenos Aires)