Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Effects of the diploidisation process upon the 5S and 35S rDNA sequences in the allopolyploid species of the Dilatata group of Paspalum (Poaceae, Paniceae)

Magdalena Vaio A C , Cristina Mazzella A , Marcelo Guerra B and Pablo Speranza A
+ Author Affiliations
- Author Affiliations

A Laboratorio de Evolución y Domesticación de las Plantas, Facultad de Agronomía, Universidad de la República, Avenida Eugenio Garzón 780, CP 12900, Montevideo, Uruguay.

B Laboratorio de Citogenética e Evolução Vegetal, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Avenida da Engenharia s/n CEP 50740600, Recife, Pernambuco, Brazil.

C Corresponding author. Email: mvaio@fagro.edu.uy

Australian Journal of Botany 67(7) 521-530 https://doi.org/10.1071/BT18236
Submitted: 7 December 2018  Accepted: 16 October 2019   Published: 20 December 2019

Abstract

The Dilatata group of Paspalum includes species and biotypes native to temperate South America. Among them, five sexual allotetraploids (x = 10) share the same IIJJ genome formula: P. urvillei Steud, P. dasypleurum Kunze ex Desv., P. dilatatum subsp. flavescens Roseng., B.R. Arrill. & Izag., and two biotypes P. dilatatum Vacaria and P. dilatatum Virasoro. Previous studies suggested P. intermedium Munro ex Morong & Britton and P. juergensii Hack. or related species as their putative progenitors and donors of the I and J genome, respectively, and pointed to a narrow genetic base for their maternal origin. It has not yet been established whether the various members of the Dilatata group are the result of a single or of multiple allopolyploid formations. Here, we aimed to study the evolutionary dynamics of rRNA genes after allopolyploidisation in the Dilatata group of Paspalum and shed some light into the genome restructuring of the tetraploid taxa with the same genome formula. We used double target fluorescence in situ hybridisation of 35S and 5S rDNA probes and sequenced the nrDNA internal transcribed spacer (ITS) region. A variable number of loci at the chromosome ends were observed for the 35S rDNA, from 2 to 6, suggesting gain and loss of sites. For the 5S rDNA, only one centromeric pair of signals was observed, indicating a remarkable loss after polyploidisation. All ITS sequences generated were near identical to the one found for P. intermedium. Although sequences showed a directional homogeneisation towards the putative paternal progenitor in all tetraploid species, the observed differences in the number and loss of rDNA sites suggest independent ongoing diploidisation processes in all taxa and genome restructuring following polyploidy.

Additional keywords: allopolyploidy, diploidisation, rDNA sites, ITS homogeneisation, Poaceae.


References

Adams KL, Wendel JF (2005) Novel patterns of gene expression in polyploid plants. Trends in Genetics 21, 539–543.
Novel patterns of gene expression in polyploid plants.Crossref | GoogleScholarGoogle Scholar | 16098633PubMed |

Bennett HW, Bashaw EC (1966) Interespecific hybridization with Paspalum spp. Crop Science 6, 52–54.
Interespecific hybridization with Paspalum spp.Crossref | GoogleScholarGoogle Scholar |

Burson BL (1978) Genome relations between Paspalum conspersum and two diploid Paspalum species. Canadian Journal of Genetics and Cytology 20, 365–372.
Genome relations between Paspalum conspersum and two diploid Paspalum species.Crossref | GoogleScholarGoogle Scholar |

Burson BL (1979) Cytogenetics of Paspalum urvillei × P. intermedium and P. dilatatum × P. paniculatum hybrids. Crop Science 19, 534–538.
Cytogenetics of Paspalum urvillei × P. intermedium and P. dilatatum × P. paniculatum hybrids.Crossref | GoogleScholarGoogle Scholar |

Burson BL (1983) Phylogenetic investigations of Paspalum dilatatum and related species. In ‘Proceedings of the XIV International Grassland Congress’. pp. 170–173. (Westview Press: Boulder, CO, USA)

Burson BL (1991) Genome relationships between tetraploid and hexaploid biotypes of dallisgrass, Paspalum dilatatum. Botanical Gazette 152, 219–223.
Genome relationships between tetraploid and hexaploid biotypes of dallisgrass, Paspalum dilatatum.Crossref | GoogleScholarGoogle Scholar |

Burson BL, Bennett HW (1971) Chromosome numbers, microsporogenesis, and mode of reproduction of seven Paspalum species. Crop Science 11, 292–294.
Chromosome numbers, microsporogenesis, and mode of reproduction of seven Paspalum species.Crossref | GoogleScholarGoogle Scholar |

Burson BL, Quarin CL (1982) Cytology of Paspalum virgatum and its relationship with P. intermedium and P. juergensii. Canadian Journal of Genetics and Cytology 24, 219–226.
Cytology of Paspalum virgatum and its relationship with P. intermedium and P. juergensii.Crossref | GoogleScholarGoogle Scholar |

Burson BL, Quarin CL (1992) Cytological relationship between Paspalum dilatatum and diploid cytotypes of P. brunneum and P. rufum. Genome 35, 332–336.
Cytological relationship between Paspalum dilatatum and diploid cytotypes of P. brunneum and P. rufum.Crossref | GoogleScholarGoogle Scholar |

Burson BL, Lee H, Bennett HW (1973) Genome relations between tetraploid Paspalum dilatatum and four diploid Paspalum species. Crop Science 13, 739–743.
Genome relations between tetraploid Paspalum dilatatum and four diploid Paspalum species.Crossref | GoogleScholarGoogle Scholar |

Chase A (1929) North American species of Paspalum. Contributions from the US National Herbarium. Vol. 28 Part 1.

Cidade FW, Vigna BBZ, Souza FHD, DallÁgnol M, Zucchi MI, de Souza-Tchies TT, de Souza AP (2013) Genetic variation in polyploid forage grass: assessing the molecular genetic variability in the Paspalum genus. BMC Genetics 14, 50–100.

Clarkson JJ, Yoong Lim K, Kovarik A, Chase MW, Knapp S, Leitch AR (2005) Long-term genome diploidization in allopolyploid Nicotiana section Repandae (Solanaceae). New Phytologist 168, 241–252.
Long-term genome diploidization in allopolyploid Nicotiana section Repandae (Solanaceae).Crossref | GoogleScholarGoogle Scholar | 16159337PubMed |

Comai L (2005) The advantages and disadvantages of being polyploid. Nature Reviews. Genetics 6, 836–846.
The advantages and disadvantages of being polyploid.Crossref | GoogleScholarGoogle Scholar | 16304599PubMed |

Cuadrado A, Carmona A, Jouvé N (2013) Chromosomal characterization of the three subgenomes in the polyploids of Hordeum murinum L.: new insight into the evolution of this complex. PLoS One 8, e81385
Chromosomal characterization of the three subgenomes in the polyploids of Hordeum murinum L.: new insight into the evolution of this complex.Crossref | GoogleScholarGoogle Scholar | 24349062PubMed |

Darriba D, Taboada GL, Doallo R, Psoada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772
jModelTest 2: more models, new heuristics and parallel computing.Crossref | GoogleScholarGoogle Scholar | 22847109PubMed |

Denham SS (2005) Revisión sistemática del subgénero Harpostachys de Paspalum (Poaceae: Panicoideae: Paniceae). Annals of the Missouri Botanical Garden 92, 463–532.

Douglas GM, Gos G, Steige KA, Salcedo A, Holm K, Josephs EB, Arunkumar R, Agren JA, Hazzouri KM, Wang W, Platts AE, Williamson RJ, Neuffer B, Lascoux M, Slotte T, Wright SI (2015) Hybrid origins and the earliest stages of diploidization in the highly successful recent polyploid Capsella bursa-pastoris. Proceedings of the National Academy of Sciences of the United States of America 112, 2806–2811.
Hybrid origins and the earliest stages of diploidization in the highly successful recent polyploid Capsella bursa-pastoris.Crossref | GoogleScholarGoogle Scholar | 25691747PubMed |

Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19, 11–15.

Dubcovsky J, Dvořák J (1995) Ribosomal RNA multi-gene loci: nomads of the Triticeae genomes. Genetics 140, 1367–1377.

Espinoza F, Quarin CL (2000) 2n+n hybridization of apomictic Paspalum dilatatum with diploid Paspalum species. International Journal of Plant Sciences 161, 221–225.
2n+n hybridization of apomictic Paspalum dilatatum with diploid Paspalum species.Crossref | GoogleScholarGoogle Scholar | 10777445PubMed |

Fukui K, Ohmido N, Khush GS (1994) Variability in rDNA loci in the genus Oryza detected through fluorescence in situ hybridization. Theoretical and Applied Genetics 87, 893–899.
Variability in rDNA loci in the genus Oryza detected through fluorescence in situ hybridization.Crossref | GoogleScholarGoogle Scholar | 24190522PubMed |

Galdeano F, Urbani MH, Sartor ME, Honfi AI, Espinoza F, Quarin CL (2016) Relative DNA content in diploid, polyploid, and multiploid species of Paspalum (Poaceae) with relation to reproductive mode and taxonomy. Journal of Plant Research 129, 697–710.
Relative DNA content in diploid, polyploid, and multiploid species of Paspalum (Poaceae) with relation to reproductive mode and taxonomy.Crossref | GoogleScholarGoogle Scholar | 26965283PubMed |

Garcia S, Garnatje T, Pellicer J, McArthur ED, Siljak-Yakovlev S, Vallés J (2009) Physical mapping of the 18S-26S rDNA by fluorescent in situ hybridization (FISH) in Camellia reticulata polyploid complex (Theaceae). Genome 52, 1012–1024.
Physical mapping of the 18S-26S rDNA by fluorescent in situ hybridization (FISH) in Camellia reticulata polyploid complex (Theaceae).Crossref | GoogleScholarGoogle Scholar | 19953129PubMed |

Garcia S, Kovařík A, Leitch AR, Garnatje T (2017) Cytogenetic features of rRNA genes across land plants: analysis of the Plant rDNA database. The Plant Journal 89, 1020–1030.
Cytogenetic features of rRNA genes across land plants: analysis of the Plant rDNA database.Crossref | GoogleScholarGoogle Scholar | 27943584PubMed |

Giussani LM, Zuloaga FO, Quarin CL, Cota-Sánchez JH, Ubayasena K, Morrone O (2009) Phylogenetic relationships in the genus Paspalum (Poaceae: Panicoideae: Paniceae): an assessment of the Quadrifaria and Virgata informal groups. Systematic Botany 34, 32–43.
Phylogenetic relationships in the genus Paspalum (Poaceae: Panicoideae: Paniceae): an assessment of the Quadrifaria and Virgata informal groups.Crossref | GoogleScholarGoogle Scholar |

Gouja H, Garnatje T, Hidalgo O, Neffati M, Raies A, García S (2015) Physical mapping of ribosomal DNA and genome size in diploid and polyploid North African Calligonum species (Polygonaceae). Plant Systematics and Evolution 301, 1569–1579.
Physical mapping of ribosomal DNA and genome size in diploid and polyploid North African Calligonum species (Polygonaceae).Crossref | GoogleScholarGoogle Scholar |

Gu Z, Xiao H (2003) Physical mapping of the 18S-26S rDNA by fluorescent in situ hybridization (FISH) in Camellia reticulata polyploid complex (Theaceae). Plant Science 164, 279–285.
Physical mapping of the 18S-26S rDNA by fluorescent in situ hybridization (FISH) in Camellia reticulata polyploid complex (Theaceae).Crossref | GoogleScholarGoogle Scholar |

Hodges SA, Arnold ML (1994) Columbines, a geographically spread species flock. Proceedings of the National Academy of Sciences of the United States of America 91, 5129–5132.
Columbines, a geographically spread species flock.Crossref | GoogleScholarGoogle Scholar | 8197196PubMed |

Huang Y, Yu F, Li X, Luo L, Wu J, Yang Y, Deng Z, Chen R, Zhang M (2017) Comparative genetic analysis of the 45S rDNA intergenic spacers from three Saccharum species PLoS One 12, e0183447
Comparative genetic analysis of the 45S rDNA intergenic spacers from three Saccharum speciesCrossref | GoogleScholarGoogle Scholar | 29228045PubMed |

Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic tress. Bioinnformatics 17, 754–755.
MrBayes: Bayesian inference of phylogenetic tress.Crossref | GoogleScholarGoogle Scholar |

Kolano B, Tomczak H, Molewska R, Jellen EN, Maluszynska J (2012) Distribution of 5S and 35S rRNA gene sites in 34 Chenopodium species (Amaranthaceae). Botanical Journal of the Linnean Society 170, 220–231.
Distribution of 5S and 35S rRNA gene sites in 34 Chenopodium species (Amaranthaceae).Crossref | GoogleScholarGoogle Scholar |

Kolano B, McCann J, Orzechowska M, Siwinska D, Temsch E, Weiss-Schneeweiss H (2016) Molecular and cytogenetic evidence for an allotetraploid origin of Chenopodium quinoa and C. berlandieri (Amaranthaceae). Molecular Phylogenetics and Evolution 100, 109–123.
Molecular and cytogenetic evidence for an allotetraploid origin of Chenopodium quinoa and C. berlandieri (Amaranthaceae).Crossref | GoogleScholarGoogle Scholar | 27063253PubMed |

Kovařík A, Renny-Byfield S, Grandbastien MA, Leitch A (2012) Evolutionary implications of genome and karyotype restructuring in Nicotiana tabacum L. In ‘Polyploidy and genome evolution’. (Eds PS Soltis, DE Soltis) pp. 209–224. (Springer: Heidelberg, Germany)

Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biological Journal of the Linnean Society. Linnean Society of London 82, 651–663.
Genome downsizing in polyploid plants.Crossref | GoogleScholarGoogle Scholar |

Lim KY, Matyásek R, Lichtenstein CP, Leitch AR (2000) Molecular cytogenetic analyses and phylogenetic studies in the Nicotiana section Tomentosae. Chromosoma 109, 245–258.
Molecular cytogenetic analyses and phylogenetic studies in the Nicotiana section Tomentosae.Crossref | GoogleScholarGoogle Scholar | 10968253PubMed |

Lim KY, Matyasek R, Kovařík A, Leitch AR (2004) Genome evolution in allotetraploid Nicotiana. Biological Journal of the Linnean Society. Linnean Society of London 82, 599–606.
Genome evolution in allotetraploid Nicotiana.Crossref | GoogleScholarGoogle Scholar |

Liu B, Davis TM (2011) Conservation and loss of ribosomal RNA gene sites in diploid and polyploid Fragaria (Rosaceae). BMC Biology 11, 157

Liu B, Xu C, Zhao N, Qi B, Kimatu JN, Pang J, Han F (2009) Rapid genomic changes in polyploid wheat and related species: implications for genome evolution and genetic improvement. Journal of Genetics and Genomics 36, 519–528.
Rapid genomic changes in polyploid wheat and related species: implications for genome evolution and genetic improvement.Crossref | GoogleScholarGoogle Scholar | 19782953PubMed |

Lunerová J, Renny-Byfield S, Matyášek R, Leitch A, Kovařík A (2017) Concerted evolution rapidly eliminates sequence variation in rDNA coding regions but not in intergenic spacers in Nicotiana tabacum allotetraploid. Plant Systematics and Evolution 303, 1043–1060.
Concerted evolution rapidly eliminates sequence variation in rDNA coding regions but not in intergenic spacers in Nicotiana tabacum allotetraploid.Crossref | GoogleScholarGoogle Scholar |

Ma XF, Gustafson JP (2005) Genome evolution of allopolyploids: a process of cytological and genetic diploidization. Cytogenetic and Genome Research 109, 236–249.
Genome evolution of allopolyploids: a process of cytological and genetic diploidization.Crossref | GoogleScholarGoogle Scholar | 15753583PubMed |

Madlung A (2013) Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity 110, 99–104.
Polyploidy and its effect on evolutionary success: old questions revisited with new tools.Crossref | GoogleScholarGoogle Scholar | 23149459PubMed |

Madlung A, Wendel JF (2013) Genetic and epigenetic aspects of polyploid evolution in plants. Cytogenetic and Genome Research 140, 270–285.
Genetic and epigenetic aspects of polyploid evolution in plants.Crossref | GoogleScholarGoogle Scholar | 23751292PubMed |

Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264, 421–424.
Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms.Crossref | GoogleScholarGoogle Scholar | 17836906PubMed |

Mishima M, Ohmido N, Fukui K, Yahara T (2002) Trends in site-number change of rDNA loci during polyploid evolution in Sanguisorba (Rosaceae). Chromosoma 110, 550–558.
Trends in site-number change of rDNA loci during polyploid evolution in Sanguisorba (Rosaceae).Crossref | GoogleScholarGoogle Scholar | 12068972PubMed |

Moraes Fernandes MIB, Barreto IL, Salzano FM (1968) Cytogenetics, ecologic and morphologic studies in Brazilian forms of Paspalum dilatatum. Canadian Journal of Genetics and Cytology 10, 131–138.
Cytogenetics, ecologic and morphologic studies in Brazilian forms of Paspalum dilatatum.Crossref | GoogleScholarGoogle Scholar |

Pedrosa A, Sandal N, Stougaard J, Schweizer D, Bachmair A (2002) Chromosomal map of the model Lotus japonicus. Genetics 161, 1661–1672.

Pellicer J, Garcia S, Vallès J, Kondo K, Garnatje T (2013) FISH mapping of 35S and 5S rRNA genes in Artemisia subgenus Dracunculus (Asteraceae): changes in number of loci during polyploid evolution and their systematic implications. Botanical Journal of the Linnean Society 171, 655–666.
FISH mapping of 35S and 5S rRNA genes in Artemisia subgenus Dracunculus (Asteraceae): changes in number of loci during polyploid evolution and their systematic implications.Crossref | GoogleScholarGoogle Scholar |

Pires JC, Lim KY, Kovařík A, Matyásek R, Boyd A, Leitch AR, Leitch IJ, Bennet MD, Soltis PS, Soltis DE (2004) Molecular cytogenetic analysis of recently evolved Tragopogon (Asteraceae) allopolyploids reveal a karyotype that is additive of the diploid progenitors. American Journal of Botany 91, 1022–1035.
Molecular cytogenetic analysis of recently evolved Tragopogon (Asteraceae) allopolyploids reveal a karyotype that is additive of the diploid progenitors.Crossref | GoogleScholarGoogle Scholar | 21653458PubMed |

Quarín CL, Norrmann GA (1990) Interspecific hybrids between five Paspalum species. Botanical Gazette 151, 366–369.
Interspecific hybrids between five Paspalum species.Crossref | GoogleScholarGoogle Scholar |

Renny-Byfield S, Wendel JF (2014) Doubling down on genomes: polyploidy and crop plants. American Journal of Botany 101, 1711–1725.
Doubling down on genomes: polyploidy and crop plants.Crossref | GoogleScholarGoogle Scholar | 25090999PubMed |

Renny-Byfield S, Chester M, Kovařík A, Le Comber SC, Grandbastien MA, Deloger M, Nichols RA, Macas J, Novák P, Chase MW, Leitch AR (2011) Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Molecular Biology and Evolution 28, 2843–2854.
Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs.Crossref | GoogleScholarGoogle Scholar | 21512105PubMed |

Renny-Byfield S, Kovařík A, Kelly LJ, Macas J, Novák P, Chase MW, Nichols RA, Pancholi MR, Grandbastien MA, Leitch AR (2013) Diploidization and genome size change in allopolyploids is associated with differential dynamics of low- and high-copy sequences. The Plant Journal 74, 829–839.
Diploidization and genome size change in allopolyploids is associated with differential dynamics of low- and high-copy sequences.Crossref | GoogleScholarGoogle Scholar | 23517128PubMed |

Roa F, Guerra M (2012) Distribution of 45S rDNA sites in chromosomes of plants: structural and evolutionary implications. BMC Evolutionary Biology 12, 225
Distribution of 45S rDNA sites in chromosomes of plants: structural and evolutionary implications.Crossref | GoogleScholarGoogle Scholar | 23181612PubMed |

Roa F, Guerra M (2015) Non-random distribution of 5S rDNa sites and its association with 45S rDNA in plant chromosomes. Cytogenetic and Genome Research 146, 243–249.
Non-random distribution of 5S rDNa sites and its association with 45S rDNA in plant chromosomes.Crossref | GoogleScholarGoogle Scholar | 26489031PubMed |

Rosato M, Moreno-Sainz JC, Galián JA, Rosselló JA (2015) Evolutionary site-number changes of ribosomal DNA loci during speciation: complex scenarios of ancestral and more recent polyploid events. AoB Plants 7, plv135
Evolutionary site-number changes of ribosomal DNA loci during speciation: complex scenarios of ancestral and more recent polyploid events.Crossref | GoogleScholarGoogle Scholar | 26578742PubMed |

Rua GH, Speranza P, Vaio M, Arakaki M (2010) A phylogenetic analysis of the genus Paspalum (Poaceae) based on cpDNA and morphology. Plant Systematics and Evolution 288, 227–243.
A phylogenetic analysis of the genus Paspalum (Poaceae) based on cpDNA and morphology.Crossref | GoogleScholarGoogle Scholar |

Sang T, Crawford DJ, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). American Journal of Botany 84, 1120–1136.
Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae).Crossref | GoogleScholarGoogle Scholar | 21708667PubMed |

Scataglini MA, Zuloaga FO, Giussani LM, Denham SS, Morrone O (2014) Phylogeny of new world Paspalum (Poaceae, Panicoideae, Paspaleae) based on plastid and nuclear markers. Plant Systematics and Evolution 300, 1051–1070.
Phylogeny of new world Paspalum (Poaceae, Panicoideae, Paspaleae) based on plastid and nuclear markers.Crossref | GoogleScholarGoogle Scholar |

Shaw J, Lickey EB, Beck JT, Farmer SS, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany 92, 142–166.
The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 21652394PubMed |

Soltis PS, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. Proceedings of the National Academy of Sciences of the United States of America 97, 7051–7057.
The role of genetic and genomic attributes in the success of polyploids.Crossref | GoogleScholarGoogle Scholar | 10860970PubMed |

Soltis DE, Soltis PS, Pires JC, Kovařík A, Tate JA, Mavrodiev E (2004) Recent and recurrent polyploidy in Tragopogon (Asteraceae): cytogenetic, genomic and genetic comparisons. Biological Journal of the Linnean Society. Linnean Society of London 82, 485–501.
Recent and recurrent polyploidy in Tragopogon (Asteraceae): cytogenetic, genomic and genetic comparisons.Crossref | GoogleScholarGoogle Scholar |

Soltis DE, Visger CJ, Soltis PS (2014) The polyploidy revolution then and now: Stebbins revisited. American Journal of Botany 101, 1057–1078.
The polyploidy revolution then and now: Stebbins revisited.Crossref | GoogleScholarGoogle Scholar | 25049267PubMed |

Soltis DE, Visger CJ, Marchant DB, Soltis PS (2016) Polyploidy: pitfalls and paths to a paradigm. American Journal of Botany 103, 1146–1166.
Polyploidy: pitfalls and paths to a paradigm.Crossref | GoogleScholarGoogle Scholar | 27234228PubMed |

Souza-Chies TT, Essi L, Rua GH, Valls JFM, Miz RB (2006) A preliminary approach to the phylogeny of the genus Paspalum (Poaceae). Genetica 126, 15–32.
A preliminary approach to the phylogeny of the genus Paspalum (Poaceae).Crossref | GoogleScholarGoogle Scholar | 16502082PubMed |

Speranza PR (2009) Evolutionary patterns in the Dilatata group (Paspalum, Poaceae). Plant Systematics and Evolution 282, 43–56.
Evolutionary patterns in the Dilatata group (Paspalum, Poaceae).Crossref | GoogleScholarGoogle Scholar |

Speranza P, Malosetti M (2007) Nuclear and cytoplasmic microsatellite markers for the species of the Dilatata group of Paspalum (Poaceae). Plant Genetic Resources 5, 14–26.
Nuclear and cytoplasmic microsatellite markers for the species of the Dilatata group of Paspalum (Poaceae).Crossref | GoogleScholarGoogle Scholar |

Speranza P, Vaio M, Mazzella C (2003) Karyotypes of two cytotypes of Paspalum quadrifarium Lam. (Poaceae). An alternative technique for small chromosomes in plants. Genetics and Molecular Biology 26, 449–503.
Karyotypes of two cytotypes of Paspalum quadrifarium Lam. (Poaceae). An alternative technique for small chromosomes in plants.Crossref | GoogleScholarGoogle Scholar |

Steige KA, Slotte T (2016) Genomic legacies of the progenitors and the evolutionary consequences of allopolyploidy. Current Opinion in Plant Biology 30, 88–93.
Genomic legacies of the progenitors and the evolutionary consequences of allopolyploidy.Crossref | GoogleScholarGoogle Scholar | 26943938PubMed |

Tate JA, Ni Z, Scheen AC, Koh J, Gilbert CA, Lefkowitz D, Chen ZJ, Soltis PS, Soltis DE (2006) Evolution and expression of homeologous loci in Tragopogon miscellus (Asteraceae), a recent and reciprocally formed allopolyploid. Genetics 173, 1599–1611.
Evolution and expression of homeologous loci in Tragopogon miscellus (Asteraceae), a recent and reciprocally formed allopolyploid.Crossref | GoogleScholarGoogle Scholar | 16648586PubMed |

Vaio M, Speranza P, Valls JF, Guerra M, Mazzella C (2005) Localization of the 5S and 45S rDNA sites and cpDNA sequence analysis in species of the Quadrifaria group of Paspalum (Poaceae, Paniceae). Annals of Botany 96, 191–200.
Localization of the 5S and 45S rDNA sites and cpDNA sequence analysis in species of the Quadrifaria group of Paspalum (Poaceae, Paniceae).Crossref | GoogleScholarGoogle Scholar | 15911540PubMed |

Vaio M, Mazzella C, Porro V, Speranza P, López-Carro B, Estramil E, Folle GA (2007) Nuclear DNA content in allo-polyploid species and synthetic hybrids in the grass genus Paspalum. Plant Systematics and Evolution 265, 109–121.
Nuclear DNA content in allo-polyploid species and synthetic hybrids in the grass genus Paspalum.Crossref | GoogleScholarGoogle Scholar |

Venuto BC, Burson BL, Hussey MA, Redfearn DD, Wyatt WE, Brown LP (2003) Forage yield, nutritive value, and grazing tolerance of dallisgrass biotypes. Crop Science 43, 295–301.
Forage yield, nutritive value, and grazing tolerance of dallisgrass biotypes.Crossref | GoogleScholarGoogle Scholar |

Wanzenböck E-M, Schöfer C, Schweizer D, Bachmair A (1997) Ribosomal transcription units integrated via T-DNA transformation associate with the nucleolus and do not require upstream repeat sequences for activity in Arabidopsis thaliana. The Plant Journal 11, 1007–1016.
Ribosomal transcription units integrated via T-DNA transformation associate with the nucleolus and do not require upstream repeat sequences for activity in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 9193072PubMed |

Weiss-Schneeweiss H, Blöch C, Turner B, Villaseñor JL, Stuessy TF, Schneeweiss GM (2012) The promiscuous and the chaste: frequent allopolyploid speciation and its genomic consequences in American daisies (Melampodium sect. Melampodium; Asteraceae). Evolution 66, 211–228.
The promiscuous and the chaste: frequent allopolyploid speciation and its genomic consequences in American daisies (Melampodium sect. Melampodium; Asteraceae).Crossref | GoogleScholarGoogle Scholar | 22220876PubMed |

Weiss-Schneeweiss H, Emadzade K, Jang TS, Schneeweiss GM (2013) Evolutionary consequences, constraints and potential of polyploidy in plants. Cytogenetic and Genome Research 140, 137–150.
Evolutionary consequences, constraints and potential of polyploidy in plants.Crossref | GoogleScholarGoogle Scholar | 23796571PubMed |

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In ‘PCR protocols: a guide to methods and applications’. (Eds M Innis, D Gelfand, J Sninsky, T White) pp. 315–322. (Academic Press: San Diego, CA, USA)

Zozomová-Lihová J, Krak K, Mandáková T, Shimizu KK, Španiel S, Vít P, Lysak MA (2014) Multiple hybridization events in Cardamine (Brassicaceae) during the last 150 years: revisiting a textbook example of neoallopolyploidy. Annals of Botany 113, 817–830.
Multiple hybridization events in Cardamine (Brassicaceae) during the last 150 years: revisiting a textbook example of neoallopolyploidy.Crossref | GoogleScholarGoogle Scholar | 24577071PubMed |

Zuloaga F, Morrone O (2005) Revisión de las especies de Paspalum para América del Sur austral (Argentina, Bolivia, sur del Brasil, Chile, Paraguay y Uruguay). Monograph Syst Bot Missouri Botanical Garden 102, 1–297.