Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Photosynthesis of an epiphytic resurrection fern Davallia angustata (Wall .ex Hook. & Grev.)

Rosanne Quinnell A , Daniel Howell A and Raymond J. Ritchie B C
+ Author Affiliations
- Author Affiliations

A The School of Life and Environmental Science, The University of Sydney, NSW, Australia.

B Tropical Plant Biology Unit, Faculty of Technology and Environment, Prince of Songkla University – Phuket, Kathu, Phuket 83120 Thailand.

C Corresponding author. Email: Raymond.r@phuket.psu.ac.th; Raymond.Ritchie@uni.sydney.edu.au

Australian Journal of Botany 65(4) 348-356 https://doi.org/10.1071/BT16222
Submitted: 4 November 2016  Accepted: 19 May 2017   Published: 29 June 2017

Abstract

Davallia (Pachypleuria) angustata (Wall. ex Hook. & Grev.) is a common epiphytic fern that grows on tree trucks and palm trees in south-east Asia. The plant is a resurrection plant, capable of rapid recovery from desiccation, but is not a CAM plant like some other epiphytic ferns. Under well-watered conditions Davallia shows a diurnal cycle of photosynthesis with maxima in mid-morning ~0900 hours (solar time). Under optimum conditions, the optimum irradiance (Eopt) = 879.3 ± 65.31 μmol photons m–2 s–1 or ~45% of full sunlight qualifying it as a sun plant. The maximum photosynthetic electron transport rate (ETRmax) was 77.77 ± 3.423 μmol e m–2 s–1 or, on a Chl a basis 350 ± 36.0 μmol g–1 (Chl a) s–1. The photosynthetic efficiency (α0) is α0 = 0.2404 ± 0.02076 e photon–1 or 1.082 ± 0.137 e photon m2 g–1 (Chl a). Eopt and maximum photosynthesis (ETRmax) are directly proportional to one another (y = mx, r = 0.8813, P < <0.001). The slope of the line is the average photosynthetic efficiency at optimum irradiance (ETRmax/Eopt or αEopt = 0.07505 ± 0.00262 e photon–1), equivalent to a mean asymptotic photosynthetic efficiency (α0) of 0.2040 ± 0.00712 e photon–1. This simple relationship between ETRmax and Eopt does not appear to have been noted before. There is some accumulation of titratable acid in the morning but no accumulation of organic acids at night. Davallia is not a CAM plant. A simple pulse amplitude modulation (PAM) protocol shows that Davallia is a homiochlorophyllous resurrection plant.

Additional keywords: Davallia, desiccation, PAM fluorometry, photosynthesis, recovery, resurrection plant.


References

Atwell BT, Kreidermann PE, Turnbull CGN (Eds) (1999) ‘Plants in action: adaptation in nature, performance in cultivation.’ (MacMillan Education Publishers: South Yarra, Vic.)

Beckett M, Loreto F, Velikova V, Brunetti C, Di Ferdinando M, Tattini M, Calfapietra C, Farrant JM (2012) Photosynthetic limitations and volatile and non-volatile isoprenoids in the poikilochlorophyllous resurrection plant Xerophyta humilis during dehydration and rehydration. Plant, Cell & Environment 35, 2061–2074.
Photosynthetic limitations and volatile and non-volatile isoprenoids in the poikilochlorophyllous resurrection plant Xerophyta humilis during dehydration and rehydration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1WltbjE&md5=22d28779958f7465b053c36476048318CAS |

Brestic M, Zivcak M (2013) PSII Fluorescence techniques for measurement of drought and high temperature stress signal in plants: protocols and applications. In ‘Molecular stress physiology in plants’. (Eds GR Rout, AB Das) pp. 87–131. (Springer: Dordrecht, the Netherlands)

Challabathula D, Puthur JT, Bartels D (2016) Surviving metabolic arrest: photosynthesis during desiccation and rehydration in resurrection plants. Annals of the New York Academy of Sciences 1365, 89–99.
Surviving metabolic arrest: photosynthesis during desiccation and rehydration in resurrection plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XltlSrsbY%3D&md5=5e2b56f6b584579f14a7ee3a2678dcb9CAS |

Cochran WG, Snedecor GW (1989) ‘Statistical methods.’ (8th edn) (Iowa State University Press: Ames, IA, USA)

Cushman JC, Borland AM (2002) Induction of Crassulacean acid metabolism by water limitation. Plant, Cell & Environment 25, 295–310.
Induction of Crassulacean acid metabolism by water limitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhslakuro%3D&md5=c5554e9b6d25597f2a9e624a39b62d84CAS |

Flores-Bavestrello A, Król M, Ivanov AG, Hüner NPA, García-Plazaola JI, Corcuera LJ, Bravo LA (2016) Two Hymenophyllaceae species from contrasting natural environments exhibit a homoiochlorophyllous strategy in response to desiccation stress. Journal of Plant Physiology 191, 82–94.
Two Hymenophyllaceae species from contrasting natural environments exhibit a homoiochlorophyllous strategy in response to desiccation stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVajtrvO&md5=8436b7029750cf9704f75be55fc31744CAS |

Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta 990, 87–92.
The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhsFWntL4%3D&md5=20595b56e51c9f70983124ac774813c4CAS |

Griffiths H, Robe WE, Girnus J, Maxwell K (2008) Leaf succulence determines the interplay between carboxylase systems and light use during Crassulacean acid metabolism in Kalanchoë species. Journal of Experimental Botany 59, 1851–1861.
Leaf succulence determines the interplay between carboxylase systems and light use during Crassulacean acid metabolism in Kalanchoë species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtleltL0%3D&md5=80af422d449b4e004c30d8a4cfb66edcCAS |

Holt NE, Fleming GR, Niyogi NK (2004) Toward an understanding of the mechanism of non-photochemical quenching in green plants. Biochemistry 43, 8281–8289.
Toward an understanding of the mechanism of non-photochemical quenching in green plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVeisro%3D&md5=ade3a536e4738e05eeb5654cd0d80969CAS |

Holtum JAM, Winter K (1999) Degrees of Crassulacean acid metabolism in tropical epiphytic and lithophytic ferns. Australian Journal of Plant Physiology 26, 749–757.
Degrees of Crassulacean acid metabolism in tropical epiphytic and lithophytic ferns.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlt1Ogtw%3D%3D&md5=9210190bba7746199d64d61be5f8e8a8CAS |

Kessler M, Siorak Y (2007) Desiccation and rehydration experiments on leaves of 43 pteridophyte species. American Fern Journal 97, 175–185.
Desiccation and rehydration experiments on leaves of 43 pteridophyte species.Crossref | GoogleScholarGoogle Scholar |

Lüttge U (2004) Ecophysiology of Crassulacean acid metabolism. Annals of Botany 93, 629–652.
Ecophysiology of Crassulacean acid metabolism.Crossref | GoogleScholarGoogle Scholar |

Lüttge U (2010) Ability of Crassulacean acid metabolism plants to overcome interacting stresses in tropical environments. AoB Plants 2010, plq005
Ability of Crassulacean acid metabolism plants to overcome interacting stresses in tropical environments.Crossref | GoogleScholarGoogle Scholar |

Markovska YK (1999) Gas exchange and malate accumulation in Haberlea rhodopensis grown under different irradiances. Biologia Plantarum 42, 559–565.
Gas exchange and malate accumulation in Haberlea rhodopensis grown under different irradiances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtVWhsbg%3D&md5=e268674aa702429c5f2d60f38459f9a0CAS |

Markovska Y, Tsonev T, Kimenov B (1997) Regulation of CAM and respiratory recycling by water supply in higher poikilohydric plants – Haberlea rhodopensis Friv. and Ramonda serbica Panc. at transition from biosis to anabiosis and vice versa. Botanica Acta 110, 18–24.
Regulation of CAM and respiratory recycling by water supply in higher poikilohydric plants – Haberlea rhodopensis Friv. and Ramonda serbica Panc. at transition from biosis to anabiosis and vice versa.Crossref | GoogleScholarGoogle Scholar |

Martinelli T, Whittaker A, Bochicchio A, Vazzana C, Suzuki A, Masclaux-Daubresse C (2007) Amino acid pattern and glutamate metabolism during dehydration in the ‘resurrection’ plant Sporobolus stapfianus: a comparison between desiccation-sensitive and desiccation-tolerant leaves. Journal of Experimental Botany 58, 3037–3046.
Amino acid pattern and glutamate metabolism during dehydration in the ‘resurrection’ plant Sporobolus stapfianus: a comparison between desiccation-sensitive and desiccation-tolerant leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFWitLvP&md5=8d808a2e396246d27f8ecef264661c06CAS |

Melis A (1989) Spectroscopic methods in photosynthesis: photosystem stoichiometry and chlorophyll antenna size. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 323, 397–409.
Spectroscopic methods in photosynthesis: photosystem stoichiometry and chlorophyll antenna size.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXkslCqt78%3D&md5=993f2da9b206e8a3033c4caba39ccc80CAS |

Minardi BD, Voytena APL, Randi AM (2014) Water stress and abscisic acid treatment induce the CAM pathway in the epiphytic fern Vittaria lineata (L.) Smith. Photosynthetica 52, 404–412.
Water stress and abscisic acid treatment induce the CAM pathway in the epiphytic fern Vittaria lineata (L.) Smith.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1aksrvF&md5=7a01243aace9bf8909d02ec45555d55dCAS |

Nooteboom HP (1998) Davalliaceae. Flora Malesiana, Series II 3, 235–276.

Norwood M, Truesdale MR, Richter A, Scott P (2000) Photosynthetic carbohydrate metabolism in the resurrection plant Craterostigma plantagineum. Journal of Experimental Botany 51, 159–165.
Photosynthetic carbohydrate metabolism in the resurrection plant Craterostigma plantagineum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsVOjsrk%3D&md5=d0351686c1a1739aafcf51d12f04ceddCAS |

Ong BL, Kluge M, Friemert V (1986) Crassulacean acid metabolism in the epiphytic ferns Drymoglossum piloselloides and Pyrrosia longifolia. Plant, Cell & Environment 9, 547–557.

Ralph PJ, Gademann R (2005) Rapid light curves: a powerful tool to assess photosynthetic activity. Aquatic Botany 82, 222–237.
Rapid light curves: a powerful tool to assess photosynthetic activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlslylsb0%3D&md5=786ad35a790b1362f04ba23a0eb2df07CAS |

Rascher U, Liebig M, Lüttge U (2000) Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant, Cell & Environment 23, 1397–1405.
Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtlykuw%3D%3D&md5=cc0eb260bb552db9d3a854a924cf63e3CAS |

Ritchie RJ (2006) Consistent sets of spectrophotometric equations for acetone, methanol and ethanol solvents. Photosynthesis Research 89, 27–41.
Consistent sets of spectrophotometric equations for acetone, methanol and ethanol solvents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFChsLs%3D&md5=3c98edc0aa960e71f40ecd6488568494CAS |

Ritchie RJ (2008) Fitting light saturation curves measured using PAM fluorometry. Photosynthesis Research 96, 201–215.
Fitting light saturation curves measured using PAM fluorometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsFChtb4%3D&md5=9023a802d0e5f8ccb640d88d37f78f7aCAS |

Ritchie RJ (2012) Photosynthesis in the blue water lily (Nymphaea caerulea Saligny) using PAM fluorometry. International Journal of Plant Sciences 173, 124–136.
Photosynthesis in the blue water lily (Nymphaea caerulea Saligny) using PAM fluorometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsleisL4%3D&md5=83af83385e67130e4749c2fa7fa0fd31CAS |

Ritchie RJ (2014) Photosynthesis in an encrusting lichen (Dirinaria picta (Sw. Schaer.ex Clem., Physiaceae) and its symbiont, Trebouxia sp., using PAM fluorometry. International Journal of Plant Sciences 175, 450–466.
Photosynthesis in an encrusting lichen (Dirinaria picta (Sw. Schaer.ex Clem., Physiaceae) and its symbiont, Trebouxia sp., using PAM fluorometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslCiu7Y%3D&md5=47115e53d69cf2e43c283d63aa6f5634CAS |

Ritchie RJ (2015a) ‘Equation of time.’ Available at www.researchgate.net/publication/282846329_Equation_of_Time. [Verified 17 July 2016].

Ritchie RJ (2015b) ‘Photosynthetic light curve fitting models.’ Available at www.researchgate.net/publication/283052624_Photosynthetic_Light_Curve_Fitting_Models. [Verified 26 May 2016].

Ritchie RJ, Bunthawin S (2010a) The use of PAM (pulse amplitude modulation) fluorometry to measure photosynthesis in a CAM orchid, Dendrobium spp. (D. cv. Viravuth Pink). International Journal of Plant Sciences 171, 575–585.
The use of PAM (pulse amplitude modulation) fluorometry to measure photosynthesis in a CAM orchid, Dendrobium spp. (D. cv. Viravuth Pink).Crossref | GoogleScholarGoogle Scholar |

Ritchie RJ, Bunthawin S (2010b) The use of PAM (pulse amplitude modulation) fluorometry to measure photosynthesis in pineapple (Ananas comosus (L.) Merr). Tropical Plant Biology 3, 193–203.
The use of PAM (pulse amplitude modulation) fluorometry to measure photosynthesis in pineapple (Ananas comosus (L.) Merr).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2htbvJ&md5=fb103ccbe3c02b0ce15d1752ed980532CAS |

Ritchie RJ, Runcie JRW (2014) A portable reflectance absorptance transmittance (RAT) meter for vascular plant leaves. Photosynthetica 52, 614–626.
A portable reflectance absorptance transmittance (RAT) meter for vascular plant leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslOgt7zF&md5=b3d38ac541ccc9c2ca496ea37cd54cf5CAS |

Schreiber U, Bilger W, Neubauer C (1995) Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. In ‘Ecophysiology of photosynthesis ecological studies. Vol. 100’. (Eds E-D Schulze, MM Caldwell) pp. 49–70. (Springer:, Berlin)

Scott P (2000) Botanical briefing: resurrection plants and the secrets of eternal leaf. Annals of Botany 85, 159–166.
Botanical briefing: resurrection plants and the secrets of eternal leaf.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsFCisg%3D%3D&md5=c4a53930d4790bc1678a0aaf9d4ebbb8CAS |

White AJ, Critchley C (1999) Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus. Photosynthesis Research 59, 63–72.
Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtlagsLk%3D&md5=9e14b7d0105f455335655efcc9b035c7CAS |

Zia A, Walker BJ, Oung HMO, Charuvi D, Jahns P, Cousin AB, Farrant JM, Reich Z, Kirchhof H (2016) Protection of the photosynthetic apparatus against dehydration stress in the resurrection plant Craterostigma pumilum. The Plant Journal 87, 664–680.
Protection of the photosynthetic apparatus against dehydration stress in the resurrection plant Craterostigma pumilum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtleisLjN&md5=20062d927f7afde1a8e5877533ac54e8CAS |