Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Sufficient sample size to study seed germination

João Paulo Ribeiro-Oliveira A E , Marli A. Ranal B , Denise Garcia de Santana C and Leandro Alves Pereira D
+ Author Affiliations
- Author Affiliations

A Instituto de Ciências Agrárias, Universidade Federal de Uberlândia. Campus Umuarama, Bloco 2E, CEP 38400-902, CP 593, Uberlândia – MG, Brazil.

B Instituto de Biologia, Universidade Federal de Uberlândia. Campus Umuarama, Bloco 2D, CEP 38400-902, CP 593, Uberlândia – MG, Brazil.

C Instituto de Ciências Agrárias, Universidade Federal de Uberlândia. Campus Umuarama, Bloco 4C, CEP 38400-902, CP 593, Uberlândia – MG, Brazil.

D Faculdade de Matemática, Universidade Federal de Uberlândia, Campus Santa Mônica, Bloco 1F, CEP 38400-902, CP 593, Uberlândia – MG, Brazil.

E Corresponding author. Email: ribeirooliveirajp@gmail.com

Australian Journal of Botany 64(4) 295-301 https://doi.org/10.1071/BT15254
Submitted: 7 November 2015  Accepted: 4 May 2016   Published: 7 June 2016

Abstract

Determining the required sample size is still a challenge in biological studies, including work on seed germination estimation. In this context, we studied a mathematical model to calculate sufficient sample size, using seeds of Bowdichia virgilioides Kunth. as a biological model. Coefficients of variation of the germinability (CVG) were calculated to determine the sufficient sample size (nc) to test the germination process. These CVG were subjected to the mathematical model (modified maximum curvature method – MMCM) and sufficient sample size was determined algebraically by the mathematical expression nc = [a2b2(2b + 1)/(b + 2)]1/(2b + 2) where a is the parameter of the model and b is here called the germinability heterogeneity index. Coefficients presented significant adjustment to this model, regardless of the physiological quality of the sample (99.94% ≤ R2 ≤ 99.99%). The nc is the maximum point of inflection of the CVG curve and depends on the physiological quality of the sample. Samples with higher germinability required fewer seeds to reach the nc than those with lower germinability. Thus, considering the variability of the studied material (measured by the CVG), the MMCM allows us to calculate the nc of the germination process. Our results demonstrate that is possible to prepare protocols to test the germination process for any species, with a reduced number of seeds.

Additional keywords: Bowdichia virgilioides, coefficient of variation of the germinability, modified maximum curvature method, forest species, Cerrado.


References

Albuquerque KS, Guimarães RM, Almeida IF, Clemente ACS (2009) Alterações fisiológicas e bioquímicas durante a embebição de sementes de sucupira-preta (Bowdichia virgilioides Kunth.). Revista Brasileira de Sementes 31, 249–258.
Alterações fisiológicas e bioquímicas durante a embebição de sementes de sucupira-preta (Bowdichia virgilioides Kunth.).Crossref | GoogleScholarGoogle Scholar |

Andrade ACS, Loureiro MB, Souza ADO, Ramos FN (1997) Quebra de dormência de sementes de sucupira-preta. Pesquisa Agropecuaria Brasileira 32, 465–469.

Bányai J, Barabás J (2002) ‘Handbook on statistics in seed testing.’ (International Seed Testing Association (ISTA): Zürich)

Bartlett JE, Kotrlik JW, Higgins CC (2001) Organizational research: determining appropriate sample size in survey research. Information Technology, Learning and Performance Journal 19, 43–50.

Brasil (2009) ‘Regras para Análise de Sementes.’ (MAPA/ACS: Ministério da Agricultura, Pecuária e Abastecimento: Brasília)

Carvalho PER (2006) ‘Espécies arbóreas brasileiras. Vol. 2.’ (Embrapa Informação Tecnológica: Brasília)

Carvalho LR, da Silva EAA, Davide AC (2006) Classificação de sementes florestais quanto ao comportamento no armazenamento. Revista Brasileira de Sementes 28, 15–25.
Classificação de sementes florestais quanto ao comportamento no armazenamento.Crossref | GoogleScholarGoogle Scholar |

CEPF (2015) ‘Cerrado.’ Critical Ecosystem Partnership Fund. Available at http://www.cepf.net/resources/hotspots/South-America/Pages/Cerrado.aspx. [Verified 30 October 2015].

Cochran WG (1977) ‘Sampling techniques.’ (3rd edn) (John Wiley & Sons: New York)

Costa GC, Nogueira C, Machado RB, Colli GR (2010) Sampling bias and the use of ecological niche modeling in conservation planning: a field evaluation in a biodiversity hotspot. Biodiversity and Conservation 19, 883–899.
Sampling bias and the use of ecological niche modeling in conservation planning: a field evaluation in a biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar |

Efron B (1979) Bootstrap method: another look at the jackknife. Annals of Statistics 7, 1–26.
Bootstrap method: another look at the jackknife.Crossref | GoogleScholarGoogle Scholar |

Engemann K, Enquist BJ, Sandel B, Boyle B, Jørgensen PM, Morueta‐Holme N, Peet RK, Violle C, Svenning JC (2015) Limited sampling hampers ‘big data’ estimation of species richness in a tropical biodiversity hotspot. Ecology and Evolution 5, 807–820.
Limited sampling hampers ‘big data’ estimation of species richness in a tropical biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar | 25692000PubMed |

Hatheway WH (1961) Convenient plot size. Agronomy Journal 53, 279–280.
Convenient plot size.Crossref | GoogleScholarGoogle Scholar |

Hatheway WH, Williams EJ (1958) Efficient estimation of the relation- ship between plot size and the variability of crop yields. Biometrics 14, 207–222.
Efficient estimation of the relation- ship between plot size and the variability of crop yields.Crossref | GoogleScholarGoogle Scholar |

ISTA (2007) ‘Method validation for seed testing.’ (International Seed Testing Association: Zürich)

ISTA (2015) ‘International rules for testing seeds: proceedings of the International Seed Testing Association.’ (International Seed Testing Association: Zürich)

Koch EJ, Rigney HJ (1951) A method of estimating optimum plot size from experimental data. Agronomy Journal 43, 17–21.
A method of estimating optimum plot size from experimental data.Crossref | GoogleScholarGoogle Scholar |

Kutner MH, Neter J, Nachtsheim CJ, Li W (2004) ‘Applied linear statistical models.’ (5th edn) (McGraw-Hill: New York)

Leisch F, Kostyshak S, Tibshirani R (2015) Package ‘bootstrap. R Software package, available at http://eu.xycoon.com/web/packages/bootstrap [Verified 10 March 2016]

Lessman KJ, Atkins RE (1963) Optimum plot size and relative efficiency of lattice designs for grain sorghum yield tests. Crop Science 3, 477–481.
Optimum plot size and relative efficiency of lattice designs for grain sorghum yield tests.Crossref | GoogleScholarGoogle Scholar |

Lin CS, Binns MR (1986) Relative efficiency of two randomized block designs having different plot size and numbers of replications and of plots per block. Agronomy Journal 78, 531–534.
Relative efficiency of two randomized block designs having different plot size and numbers of replications and of plots per block.Crossref | GoogleScholarGoogle Scholar |

Lorentz LH, Boligon AA, Storck L, Lúcio AD (2010) Plot size and precision in sunflower experiments. Scientia Agricola 67, 408–413.
Plot size and precision in sunflower experiments.Crossref | GoogleScholarGoogle Scholar |

Meier VD, Lessman KJ (1971) Estimation of optimum field plot shape and size for testing yield in Crambe abyssinica Hochst. Crop Science 11, 648–650.
Estimation of optimum field plot shape and size for testing yield in Crambe abyssinica Hochst.Crossref | GoogleScholarGoogle Scholar |

Miles SR (1963) ‘Handbook of tolerances and of measures of precision for seed testing: proceedings on the International Seed Testing Association 28.’ (International Seed Testing Association: Zürich)

Neter J, Wasserman W, Kutner M (1985) ‘Applied linear statistical models.’ (Richard D Irwin: Homewood, IL, USA)

Oertli B, Joye DA, Castella E, Juge R, Cambin D, Lachavanne JB (2002) Does size matter? The relationship between pond area and biodiversity. Biological Conservation 104, 59–70.
Does size matter? The relationship between pond area and biodiversity.Crossref | GoogleScholarGoogle Scholar |

Palomino EC, Ramalho MAP, Ferreira DF (2000) Tamanho de amostra para avaliação de famílias de meios-irmãos de milho. Pesquisa Agropecuaria Brasileira 35, 1433–1439.
Tamanho de amostra para avaliação de famílias de meios-irmãos de milho.Crossref | GoogleScholarGoogle Scholar |

Pereira RS, Ranal MA, Santana DG (2009) Emergência de plântulas oriundas de sementes recém-colhidas e armazenadas de Copaifera langsdorffii Desf. (Caesalpinoideae), Triângulo Mineiro, Brasil. Revista Árvore 33, 643–652.
Emergência de plântulas oriundas de sementes recém-colhidas e armazenadas de Copaifera langsdorffii Desf. (Caesalpinoideae), Triângulo Mineiro, Brasil.Crossref | GoogleScholarGoogle Scholar |

Ranal MA, Santana DG (2006) How and why to measure the germination process? Revista Brasileira de Botanica. Brazilian Journal of Botany 29, 1–11.
How and why to measure the germination process?Crossref | GoogleScholarGoogle Scholar |

Ribeiro-Oliveira JP, Ranal MA (2014) Sementes florestais brasileiras: início precário, presente inebriante e o futuro, promissor? Ciência Florestal 24, 771–784.
Sementes florestais brasileiras: início precário, presente inebriante e o futuro, promissor?Crossref | GoogleScholarGoogle Scholar |

Ribeiro-Oliveira JP, Ranal MA (2016) Sample size in studies on the germination process. Botany 94, 103–115.
Sample size in studies on the germination process.Crossref | GoogleScholarGoogle Scholar |

Ribeiro-Oliveira JP, Ranal MA, Santana DGD (2013) A amplitude amostral interfere nas medidas de germinação de Bowdichia virgilioides Kunth? Ciência Florestal 23, 623–634.
A amplitude amostral interfere nas medidas de germinação de Bowdichia virgilioides Kunth?Crossref | GoogleScholarGoogle Scholar |

Sampaio LSV, Peixoto CP, Peixoto MFSP, Costa JA, Garrido MS, Mendes LN (2001) Ácido sulfúrico na superação da dormência de sementes de sucupira–preta (Bowdichia virgilioides H.B.K. – Fabaceae). Revista Brasileira de Sementes 23, 184–190.
Ácido sulfúrico na superação da dormência de sementes de sucupira–preta (Bowdichia virgilioides H.B.K. – Fabaceae).Crossref | GoogleScholarGoogle Scholar |

Santana DG, Ranal MA (2004) ‘Análise da germinação: um enfoque estatístico.’ (Editora da UnB: Brasília)

Santana DG, Wielewicki AP, Salomão AN (2012) Validation of quality tests for forest seed species. Seed Science Research 22, S74–S79.
Validation of quality tests for forest seed species.Crossref | GoogleScholarGoogle Scholar |

Silva Júnior IF, Cechinel Filho V, Zacchino SA, Lima JCS, Martins DTO (2009) Antimicrobial screening of some medicinal plants from Mato Grosso Cerrado. Revista Brasileira de Farmacognosia 19, 242–248.
Antimicrobial screening of some medicinal plants from Mato Grosso Cerrado.Crossref | GoogleScholarGoogle Scholar |

Smiderle OJ, Sousa RCP (2003) Dormência em sementes de paricarana (Bowdichia virgilioides Kunth – Fabaceae – Papilionidae). Revista Brasileira de Sementes 25, 48–52.
Dormência em sementes de paricarana (Bowdichia virgilioides Kunth – Fabaceae – Papilionidae).Crossref | GoogleScholarGoogle Scholar |

Smith HF (1938) An empirical law describing heterogeneity in the yields of agricultural crops. The Journal of Agricultural Science 28, 1–23.
An empirical law describing heterogeneity in the yields of agricultural crops.Crossref | GoogleScholarGoogle Scholar |

Steel RGD, Torrie JH, Dickey DA (1997) ‘Principles and procedures of statistics: a biometrical approach.’ (3rd edn) (McGraw Hill Book: New York)

Stockwell DR, Peterson AT (2002) Effects of sample size on accuracy of species distribution models. Ecological Modelling 148, 1–13.
Effects of sample size on accuracy of species distribution models.Crossref | GoogleScholarGoogle Scholar |

Storck L (2011) Partial collection of data on potato field for experimental planning. Field Crops Research 121, 286–290.
Partial collection of data on potato field for experimental planning.Crossref | GoogleScholarGoogle Scholar |

Storck L, Cargnelutti Filho A, Lopes SJ, Toebe M, Silveira TR (2010) Experimental plan for single, double and triple hybrid corn. Maydica 55, 27–32.

Swallow WH, Wehner TC (1986) Optimum plot size determination and its application to cucumber yield trials. Euphytica 35, 421–432.
Optimum plot size determination and its application to cucumber yield trials.Crossref | GoogleScholarGoogle Scholar |

Thomazzi SM, Silva CB, Silveira DCR, Vasconcellos CLC, Lira AF, Cambui EVF, Estevam CS, Antoniolli AR (2010) Antinociceptive and anti-inflammatory activities of Bowdichia virgilioides (sucupira). Journal of Ethnopharmacology 127, 451–456.
Antinociceptive and anti-inflammatory activities of Bowdichia virgilioides (sucupira).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c%2FotFyjug%3D%3D&md5=1f7ec277d448cf478c768844272883beCAS | 19837149PubMed |

Thompson SK (1987) Sample size for estimating multinomial proportions. The American Statistician 41, 42–46.

Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A (2008) Effects of sample size on the performance of species distribution models. Diversity & Distributions 14, 763–773.
Effects of sample size on the performance of species distribution models.Crossref | GoogleScholarGoogle Scholar |

Wong ACM, Wu J (2002) Small sample asymptotic inference for the coefficient of variation: normal and non-normal models. Journal of Statistical Planning and Inference 104, 73–82.
Small sample asymptotic inference for the coefficient of variation: normal and non-normal models.Crossref | GoogleScholarGoogle Scholar |

Zhang R, Warrick AW, Myers DE (1994) Heterogeneity, plot shape effect and optimum plot size. Geoderma 62, 183–197.
Heterogeneity, plot shape effect and optimum plot size.Crossref | GoogleScholarGoogle Scholar |