Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Spatial structure and development of Paspalum vaginatum (Poaceae): an architectural approach

Liliana T. Fabbri A D , Mariel Perreta B C and Gabriel H. Rua A C
+ Author Affiliations
- Author Affiliations

A Universidad de Buenos Aires, Facultad de Agronomía, Av. San Martín 4453, C1417DSE, CABA, Argentina.

B Universidad Nacional del Litoral, Facultad de Ciencias Agrarias, Kreder 2805, S3080HOF, Esperanza, Santa Fe, Argentina.

C Member of ‘Carrera del Investigador’, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.

D Corresponding author. Email: fabbri@agro.uba.ar

Australian Journal of Botany 64(2) 153-159 https://doi.org/10.1071/BT15156
Submitted: 7 July 2015  Accepted: 25 February 2016   Published: 1 April 2016

Abstract

Paspalum vaginatum Sw. is a perennial grass originating from tropical and subtropical regions worldwide that plays important ecological and utilitarian roles such as dune stabilisation and erosion control, and is used as a lawn and forage plant. The vegetative morphology of shoots was studied using an architectural approach with the aim of identifying constant features that characterise the architectural unit of this species, describing its developmental dynamics, and exploring the morphological basis of its extraordinary plasticity and adaptability to multiple ecological conditions. Plants of two ecotypes were cultivated in pots outdoors during two consecutive summers, and axes of different branching order were marked for periodical observations. Leaf typology, orientation and position of branches and occurrence and position of reproductive axes were considered. The basic growth pattern arises as a result of extensive plagiotropic growth of axes up to fourth branching order, which initially behave as stolons but can become rhizomes insofar the soil cover increases. Orthotropic floriferous axes up to fifth order develop at the axils of stolons, which can form ‘daughter’ clumps by basal tillering. Despite quantitative differences, both ecotypes share similar architectural features. Architectural analysis provides the basis to predict space occupation dynamics under different environmental conditions of growth.

Additional keywords: branching system, morphology, seashore paspalum.


References

Anderson J, Ehringer NJ (2000) Ecological uses for Paspalum vaginatum (Swartz) seashore paspalum. In ‘Proceedings of the 27th annual conference of ecosystem restoration and creation’. (Ed. PJ Cannizzaro). pp. 10–13. (Hillsborough Community College: Tampa, FL, USA)

Barthélémy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Annals of Botany 99, 375–407.
Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny.Crossref | GoogleScholarGoogle Scholar | 17218346PubMed |

Barthélémy D, Edelin C, Hallé F (1991) Canopy architecture. In ‘Physiology of trees’. (Ed. AS Raghavendra) pp. 1–20. (John Wiley & Sons Inc: New York, USA.)

Bonser SP, Aarssen LW (2003) Allometry and development in herbaceous plants: functional responses of meristem allocation to light and nutrient availability. American Journal of Botany 90, 404–412.
Allometry and development in herbaceous plants: functional responses of meristem allocation to light and nutrient availability.Crossref | GoogleScholarGoogle Scholar | 21659133PubMed |

Burkart SE, León RJC, Movia CP (1990) Inventario fitosociológico del pastizal de la Depresión del Salado (Prov. Bs. As.) en un área representativa de sus principales ambientes. Darwiniana 30, 27–69.

Campos JA, Herrera M, Biurrun I, Loidi J (2004) The role of alien plants in the natural coastal vegetation in central-northern Spain. Biodiversity and Conservation 13, 2275–2293.
The role of alien plants in the natural coastal vegetation in central-northern Spain.Crossref | GoogleScholarGoogle Scholar |

Duncan RR, Carrow RN (2000) ‘Seashore paspalum. The environmental turfgrass.’ (Ann Arbor Press: Chelsea, MI, USA)

Echarte AM, Clausen AM (1993) Afinidades morfológicas entre Paspalum distichum sensu lato y Paspalum vaginatum (Poaceae). Boletín de la Sociedad Argentina de Botánica 29, 143–152.

Fabbri LT, Ploschuk EL, López MV, Insausti P, Rua GH (2016) Freezing tolerance differs between two ecotypes of Paspalum vaginatum (Poaceae). Acta Botanica Brasilica 30, 152–156.
Freezing tolerance differs between two ecotypes of Paspalum vaginatum (Poaceae).Crossref | GoogleScholarGoogle Scholar |

Gates M (2003) Seashore paspalum. USDA Natural Resources Conservation Service Plant Guide 5–8. Available at http://plants.usda.gov/plantguide/pdf/pg_pava.pdf [Verified 14 January 2016].

Graeme M, Kendal H (2001) Saltwater paspalum (Paspalum vaginatum): a weed review. Available at http://www.ew.govt.nz/PageFiles/15227/TR 2001–18.pdf [Verified June 2015].

Hallé F (2004) ‘Architecture de plantes.’ (JPC Edition: Montpellier, France)

Hallé F, Oldemann RA, Tomlinson PB (1978) ‘Tropical trees and forests: an architectural analysis.’ (Springer-Verlag: New York)

Harper JL, White J (1974) The demography of plants. Annual Review of Ecology and Systematics 5, 419–463.
The demography of plants.Crossref | GoogleScholarGoogle Scholar |

Holttum RE (1955) Growth-habits of monocotyledons. Variations on a theme. Phytomorphology 399–413.

Huber H, Lukác S, Watson M (1999) Spatial structure of stoloniferous herbs: an interplay between architectural blue-print, ontogeny and phenotypic plasticity. Plant Ecology 141, 107–115.
Spatial structure of stoloniferous herbs: an interplay between architectural blue-print, ontogeny and phenotypic plasticity.Crossref | GoogleScholarGoogle Scholar |

Insausti P, Chaneton E, Soriano A (1999) Flooding reverted grazing effects on plant community structure in mesocosms of lowland grassland. Oikos 84, 266–276.
Flooding reverted grazing effects on plant community structure in mesocosms of lowland grassland.Crossref | GoogleScholarGoogle Scholar |

Jeannoda-Robinson V (1977) Contribution a l’étude de l’architecture des herbes. PhD Thesis. Université des Sciences et Techniques du Languedoc-Montpellier, France.

Klimeš L, Klimešova J, Hendriks R, van Groenendael JM (1997) Clonal plant architecture: a comparative analysis of form and function. In ‘The ecology and evolution of clonal plants’. (Eds H de Kroon, V Groenendael) pp. 1–29. (Backbuys Publishers: Leiden, The Nederlands)

Marfenin NN (1999) The development of modular organization concept. Journal of General Biology 60, 6–17.

McDermid KJ, Lefebvre JA, Balazs GH (2015) Nonnative seashore paspalum, Paspalum vaginatum (Poaceae), consumed by Hawaiian green sea turtles (Chelonia mydas): evidence for nutritional benefits. Pacific Science 69, 48–57.
Nonnative seashore paspalum, Paspalum vaginatum (Poaceae), consumed by Hawaiian green sea turtles (Chelonia mydas): evidence for nutritional benefits.Crossref | GoogleScholarGoogle Scholar |

Mühlberg H (1967) Die Wuchstypen der mitteldeutschen Poaceen. Hercynia 4, 11–50.

Perreta M, Vegetti A (2005) Patrones estructurales en las plantas vasculares: una revisión. Gayana Botanica 62, 9–19.
Patrones estructurales en las plantas vasculares: una revisión.Crossref | GoogleScholarGoogle Scholar |

Pottier J, Evette A (2010) On the relationship between clonal traits and small-scale spatial patterns of three dominant grasses and its consequences on community diversity. Folia Geobotanica 45, 59–75.
On the relationship between clonal traits and small-scale spatial patterns of three dominant grasses and its consequences on community diversity.Crossref | GoogleScholarGoogle Scholar |

Quarín CL (1992) The nature of apomixis and its origin in Panicoid grasses. Apomixis Newsletter 5, 8–15.

Riefner RE, Columbus JT (2008) Paspalum vaginatum (Poaceae), a new threat to wetland diversity in southern California. Journal of the Botanical Research Institute of Texas 2, 743–759. http://www.scopus.com/inward/record.url?eid=2-s2.0-74049134645&partnerID=tZOtx3y1

Riefner RE, Denham SS, Columbus JT (2010) Paspalum pubiflorum and P. quadrifarium (Poaceae) new to California, with a key and notes on invasive species. Journal of the Botanical Research Institute of Texas 4, 761–770. http://www.scopus.com/inward/record.url?eid=2-s2.0-78650658209&partnerID=tZOtx3y1

Rua GH, Gróttola MC (1997) Growth form models within the genus Paspalum L. (Poaceae, Paniceae). Flora 192, 65–80.

Serebriakova TI (1969) Vetvlenie i Kutsenie v Semeistve Poaceae. Botanicheskii Zhurnal 54, 858–871.

Shaw WB, Allen RB (2003) Ecological impacts of sea couch and saltwater paspalum in Bay of Plenty estuaries. DOC Science Internal Series, Department of Conservation, Wellington, New Zealand 113. Available at http://www.doc.govt.nz/documents/science-and-technical/dsis113.pdf [Verified 14 January 2016].

Weberling F (1981) ‘Morphologie der Blüten und der Blütenstände.’ (Eugen Ulmer: Stuttgart, Germany)

White J (1979) The plant as a metapopulation. Annual Review of Ecology and Systematics 10, 109–145.
The plant as a metapopulation.Crossref | GoogleScholarGoogle Scholar |

Zuloaga F, Morrone O (2001) Paspalum. In ‘Flora Fanerogámica Argentina 71’. pp. 48–49. (Proflora CONICET: Córdoba, Argentina)