Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

First karyological report in Larnax and Deprea (Solanaceae)

Rocío Deanna A B D , Gloria E. Barboza A B and Marisel A. Scaldaferro A C
+ Author Affiliations
- Author Affiliations

A Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and Universidad Nacional de Córdoba, CC 495, CP 5000, Córdoba, Argentina.

B Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Córdoba, Argentina.

C Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba, Avenue Vélez Sarsfield 299, CP 5000, Córdoba, Argentina.

D Corresponding author. Email: rociodeanna@gmail.com

Australian Journal of Botany 62(3) 251-261 https://doi.org/10.1071/BT14041
Submitted: 27 February 2014  Accepted: 7 June 2014   Published: 3 July 2014

Abstract

Somatic chromosomes of 12 samples belonging to seven Larnax Miers species and three Deprea Raf. species are studied. Chromosome number and karyotype analysis of both genera are reported for the first time. All taxa have 2n = 24. The most frequent haploid karyotype formula (8 of 12 samples) is 9 metacentric (m) + 3 submetacentric (sm) chromosomes, whereas L. glabra (Standl.) N.W. Sawyer and Larnax sp. display 10 m + 2 sm. Karyotypes of L. nieva S. Leiva & N.W. Sawyer and D. cuyacensis (N.W. Sawyer & S. Leiva) S. Leiva & Lezama are remarkable for the highest number of sm chromosome pairs, with 7 m + 5 sm and 5 m + 7 sm, respectively, presenting the highest intrachromosomal asymmetry index (A1), whereas Larnax sp. and L. glabra show the lowest A1. Most samples (9 of 12) examined have only one pair of chromosomes with nucleolar organiser regions (NOR), whereas L. glabra, Larnax sp., and D. cuyacensis possess two pairs of NOR. Systematic considerations about the monophyly of Larnax and Deprea are provided. The different karyotype parameters obtained, together with morphological characters, are discussed to single out the species.

Additional keywords: AgNOR, cytogenetics, Feulgen, monophyly, South America.


References

Acosta MC, Bernardello G, Guerra M, Moscone E (2005) Karyotype analysis in several South American species of Solanum and Lycianthes rantonnei (Solanaceae). Taxon 54, 713–723.
Karyotype analysis in several South American species of Solanum and Lycianthes rantonnei (Solanaceae).Crossref | GoogleScholarGoogle Scholar |

Averett JE (1973) Biosystematic study of Chamaesaracha (Solanaceae). Rhodora 75, 325–365.

Badr A, Khalifa SF, Aboel-Atta AI, Abou-El-Enain MM (1997) Chromosomal criteria and taxonomic relationships in the Solanaceae. Cytologia 62, 103–113.
Chromosomal criteria and taxonomic relationships in the Solanaceae.Crossref | GoogleScholarGoogle Scholar |

Barboza GE, Chiarini FE, Stehmann JR (2010) Real identity of Witheringia sellowiana (Solanaceae), typification, and chromosome number. Systematic Botany 35, 420–424.
Real identity of Witheringia sellowiana (Solanaceae), typification, and chromosome number.Crossref | GoogleScholarGoogle Scholar |

Barboza GE, Leiva González S, Carrizo García C, Orozco CI (2013) Deprea zamorae (Physalideae, Solanoideae, Solanaceae): a new species from southern Ecuador. Phytotaxa 116, 41–50.
Deprea zamorae (Physalideae, Solanoideae, Solanaceae): a new species from southern Ecuador.Crossref | GoogleScholarGoogle Scholar |

Battaglia E (1955) Chromosome morphology and terminology. Caryologia 8, 179–187.
Chromosome morphology and terminology.Crossref | GoogleScholarGoogle Scholar |

Bernardello G, Stiefkens L, Las Peñas ML (2008) Karyotype studies in Grabowskia and Phrodus (Solanaceae). Plant Systematics and Evolution 275, 265–269.
Karyotype studies in Grabowskia and Phrodus (Solanaceae).Crossref | GoogleScholarGoogle Scholar |

Bloom SE, Goodpasture C (1976) An improved technique for selective silver staining of nucleolar organizer regions in human chromosomes. Human Genetics 34, 199–206.
An improved technique for selective silver staining of nucleolar organizer regions in human chromosomes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2s%2FntVejsw%3D%3D&md5=0b6192a1ada3c4221c7f4311be80a675CAS |

Bohs L (1994) Cyphomandra (Solanaceae). Flora Neotropica Monograph List 63, 1–75.

Bohs L (2000) Insights into the Witheringia solanacea (Solanaceae) Complex in Costa Rica. I. Breeding systems and crossing studies. Biotropica 32, 70–79.
Insights into the Witheringia solanacea (Solanaceae) Complex in Costa Rica. I. Breeding systems and crossing studies.Crossref | GoogleScholarGoogle Scholar |

Bowen CC (1956) Freezing by liquid carbon dioxide in making slides permanent. Stain Technology 31, 87–90.

Cardona D, Quiñones W, Torres F, Vélez ID, Orozco CI, Garzón J, Echeverri F (2005) Estructura y actividad leishmanicida de larnaxolida A y B, nuevos withanólidos de Larnax glabra (Standl.) Sawyer. Actualidades Biológicas 27, 81–86. [Structure and leishmanicida activity of larnaxolide A and B, new withanolides from Larnax glabra (Standl.) Sawyer]

Carr GD (1985) Additional chromosome numbers of Hawaiian flowering plants. Pacific Science 39, 302–306.

Chiarini FE, Moreno NC, Barboza GE, Bernardello G (2010) Karyotype characterization of Andean Solanoideae (Solanaceae). Caryologia 63, 278–291.
Karyotype characterization of Andean Solanoideae (Solanaceae).Crossref | GoogleScholarGoogle Scholar |

Cueva MA, Treviño ÍF (2012) Una nueva especie de Deprea Raf. (Solanaceae) del Perú. Revista Peruana de Biologia 19, 143–147. [A new species of Deprea Raf. (Solanaceae) from Peru]

D’Arcy WG (1973) New names for Neotropical plants. Phytologia 25, 116

D’Arcy WG (1993) A new combination in Deprea (Solanaceae). Novon 3, 22
A new combination in Deprea (Solanaceae).Crossref | GoogleScholarGoogle Scholar |

Deanna R, Leiva González S, Barboza GE (2014) Four new species and eighteen lectotypifications of Larnax from Ecuador and Peru and a new synonym of Deprea orinocensis (Solanaceae: Solanoideae, Physalideae). Phytotaxa 167, 1–34.
Four new species and eighteen lectotypifications of Larnax from Ecuador and Peru and a new synonym of Deprea orinocensis (Solanaceae: Solanoideae, Physalideae).Crossref | GoogleScholarGoogle Scholar |

Dunal MF (1852) Solanaceae. Prodromus Systematis Naturalis Regni Vegetabilis 13, 1–690.

Ellis RH, Hong TD, Roberts EH (1985) ‘Handbook of seed technology for Genebanks. 2. Compendium of specific germination, information and test recommendations. Handbook for Genebanks 3.’ (International Board for Plant Genetic Resources: Rome)

Flavell RB, O’Dell M (1979) The genetic control of nucleolus formation in wheat. Chromosoma 71, 135–152.
The genetic control of nucleolus formation in wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhvVegsL4%3D&md5=055978b44293af6a69d5ba89c0bfb95bCAS |

Hemsley WB (1882) Botany. Biologia Centrali-americana 2, 329–424.

Hunziker AT (1977) Estudios sobre Solanaceae. VIII. Novedades varias sobre tribus, géneros, secciones y especies de Sud América. Kurtziana 10, 7–50. [Studies in Solanaceae VIII. Novelties about tribes, genera, sections, and species from South America]

Hunziker AT (2001) ‘Genera Solanacearum.’ (K-G Ruggell, ARG Gantner Verlag, K.G.: Ruggell, Liechtenstein)

Jiménez R, Burgos M, Diaz de la Guardia R (1988) A study of the Ag-staining significance in mitotic NORs. Heredity 60, 125–127.
A study of the Ag-staining significance in mitotic NORs.Crossref | GoogleScholarGoogle Scholar | 2450854PubMed |

Jong J (1997) ‘Laboratory manual of plant cytological techniques.’ (Royal Botanical Garden: Edinburgh)

Kodama Y, Yoshida MC, Sasaki M (1980) An improved silver staining technique for nucleolus organizer regions by using nylon cloth. The Japanese Journal of Human Genetics 25, 229–233.
An improved silver staining technique for nucleolus organizer regions by using nylon cloth.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3M7ntV2kug%3D%3D&md5=6bb5b8bf283063d4edf32e85df0d13bbCAS |

Lacadena JR, Cermeño MC, Orellana J, Santos JL (1984) Evidence for wheat-rye nucleolar competition (amphiplasty) in triticale by silver staining procedure. Theoretical and Applied Genetics 67, 207–213.
Evidence for wheat-rye nucleolar competition (amphiplasty) in triticale by silver staining procedure.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2c3gtVCktw%3D%3D&md5=c1150f89ef695e7648a32a64272943cfCAS | 24258550PubMed |

Leiva González S, Lezama Asencio P (2003) Larnax nieva (Solanaceae: Solaneae) una nueva especie del Departamento de Amazonas, Perú. Arnaldoa 10, 105–110. [Larnax nieva (Solanaceae: Solaneae) a new species from Amazonas Department, Peru]

Leiva González S, Rodríguez Rodríguez EF (2006) Tres nuevas especies de Larnax (Miers) Hunziker (Solanaceae) del Departamento Amazonas, Perú. Arnaldoa 13, 290–304. [Three new species of Larnax (Miers) Hunziker (Solanaceae) from Amazonas Department, Peru]

Leiva González S, Pereyra Villanueva E, Barboza GE (2008) Larnax altomayoense y Larnax chotanae (Solanaceae) dos nuevas especies de los bosques montanos del Norte del Perú. Arnaldoa 15, 197–209. [Larnax altomayoense and Larnax chotanae (Solanaceae) two new species from montane forests of Northern Peru]

Levan A, Fredga L, Sandberg A (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52, 201–220.
Nomenclature for centromeric position on chromosomes.Crossref | GoogleScholarGoogle Scholar |

Madhavadian P (1967) The cytology of Iochroma tubulosa Benth. Caryologia 20, 309–315.
The cytology of Iochroma tubulosa Benth.Crossref | GoogleScholarGoogle Scholar |

Menzel MY (1950) Cytotaxonomic observations in some genera of the Solanaceae: Margaranthus, Saracha and Quincula. American Journal of Botany 37, 25–30.
Cytotaxonomic observations in some genera of the Solanaceae: Margaranthus, Saracha and Quincula.Crossref | GoogleScholarGoogle Scholar |

Menzel MY (1951) The cytotaxonomy and genetics of Physalis. Proceedings of the American Philosophical Society 95, 132–183.

Miguel V, Acosta MC, Moscone EA (2012) Karyotype analysis in two species of Solanum (Solanaceae) Sect. Cyphomandropsis based on chromosoma banding. New Zealand Journal of Botany 50, 217–225.
Karyotype analysis in two species of Solanum (Solanaceae) Sect. Cyphomandropsis based on chromosoma banding.Crossref | GoogleScholarGoogle Scholar |

Misico RI, Nicotra V, Oberti JC, Barboza G, Gil RR, Burton G (2011) Whitanolides and related steroids. Progress in the Chemistry of Organic Natural Products 94, 127–229.

Moscone EA (1989) Estudios citotaxonómicos en las tribus Solaneae y Nicotianae (Solanaceae) de América del Sur [Cytotaxonomic studies in Solaneae and Nicotianae tribes (Solanaceae) from South America]. Unpublished Dissertation Thesis, University of Córdoba, Córdoba, Argentina.

Moscone EA (1992) Estudios sobre cromosomas meióticos en Solanaceae de Argentina. Darwiniana 31, 261–297. [Studies about meiotic chromosomes in Solanaceae from Argentina]

Moscone EA, Loidl J, Ehrendorfer F, Hunziker AT (1995) Analysis of active nucleolus organizing regions in Capsicum (Solanaceae) by silver staining. American Journal of Botany 82, 276–287.
Analysis of active nucleolus organizing regions in Capsicum (Solanaceae) by silver staining.Crossref | GoogleScholarGoogle Scholar |

Moyetta NR, Stiefkens LB, Bernardello G (2013) Karyotypes of South American species of the Morelloid and Dulcamaroid clades (Solanum, Solanaceae). Caryologia 66, 333–345.
Karyotypes of South American species of the Morelloid and Dulcamaroid clades (Solanum, Solanaceae).Crossref | GoogleScholarGoogle Scholar |

Nicoloff H, Anastassova-Kristeva M, Künzel G, Rieger R (1977) The behavior of nucleolus organizers in structurally changed karyotypes of barley. Chromosoma 62, 103–109.
The behavior of nucleolus organizers in structurally changed karyotypes of barley.Crossref | GoogleScholarGoogle Scholar |

Nicoloff H, Anastassova-Kristeva M, Rieger R, Künzel G (1979) ‘Nucleolar dominance’ as observed in barley translocation lines with specifically reconstructed SAT chromosomes. Theoretical and Applied Genetics 55, 247–251.
‘Nucleolar dominance’ as observed in barley translocation lines with specifically reconstructed SAT chromosomes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2c3jsVKgtg%3D%3D&md5=bf431f78a8593dbe401fbb9f2ebe3294CAS | 24306771PubMed |

Olmstead R, Bohs L, Migid HA, Santiago-Valentín E, García VF, Collier SM (2008) A molecular phylogeny of the Solanaceae. Taxon 57, 1159–1181.

Rego LNAA, da Silva CRM, Torezan JMD, Gaeta ML, Laforga Vanzela AL (2009) Cytotaxonomical study in Brazilian species of Solanum, Lycianthes and Vassobia (Solanaceae). Plant Systematics and Evolution 279, 93–102.
Cytotaxonomical study in Brazilian species of Solanum, Lycianthes and Vassobia (Solanaceae).Crossref | GoogleScholarGoogle Scholar |

Romero Zarco C (1986) A new method for estimating karyotype asymmetry. Taxon 35, 526–530.
A new method for estimating karyotype asymmetry.Crossref | GoogleScholarGoogle Scholar |

Särkinen T, Pennington RT, Lavin M, Simon MF, Hughes CE (2012) Evolutionary islands in the Andes: persistence and isolation explain high endemism in Andean dry tropical forests. Journal of Biogeography 39, 884–900.
Evolutionary islands in the Andes: persistence and isolation explain high endemism in Andean dry tropical forests.Crossref | GoogleScholarGoogle Scholar |

Särkinen T, Bohs L, Olmstead RG, Knapp S (2013) A phylogenetic framework study of the nightshades (Solanaceae): a dated 1000-tip tree. BMC Evolutionary Biology 13, 214–229.
A phylogenetic framework study of the nightshades (Solanaceae): a dated 1000-tip tree.Crossref | GoogleScholarGoogle Scholar | 24283922PubMed |

Sato S (1981) Cytological studies on the satellited chromosomes of Allium cepa. Caryologia 34, 431–440.
Cytological studies on the satellited chromosomes of Allium cepa.Crossref | GoogleScholarGoogle Scholar |

Sato S, Matsumoto E, Kuroki Y (1981) Satellite association of the nucleolar chromosomes in a plant. Protoplasma 108, 139–147.
Satellite association of the nucleolar chromosomes in a plant.Crossref | GoogleScholarGoogle Scholar |

Sawyer NW (1999) The systematics of Deprea Raf. and Larnax (Miers) Hunz. (Solanaceae). Unpuplished D. Phil. Thesis, University of Connecticut, Storrs, CT.

Sawyer NW (2001) New species and combination in Larnax (Solanaceae). Novon 11, 460–471.
New species and combination in Larnax (Solanaceae).Crossref | GoogleScholarGoogle Scholar |

Sawyer NW (2005) Systematics of Deprea and Larnax (Solanaceae) based on morphological evidence. In ‘A festschrift for William G. D’Arcy’. (Eds RC Keating, VC Hollowell, TB Croat) pp. 259–285. (Missouri Botanical Garden: Saint Louis, MO)

Scaldaferro MA, Grabiele M, Moscone EA (2013) Heterochromatin type, amount and distribution in wild species of chili peppers (Capsicum, Solanaceae). Genetic Resources and Crop Evolution 60, 693–709.
Heterochromatin type, amount and distribution in wild species of chili peppers (Capsicum, Solanaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitFagsb8%3D&md5=797109502d1d04001983be3705144b71CAS |

Schwarzacher T, Ambros P, Schweizer D (1980) Application of Giemsa banding to orchid karyotype analysis. Plant Systematics and Evolution 134, 293–297.
Application of Giemsa banding to orchid karyotype analysis.Crossref | GoogleScholarGoogle Scholar |

Sousa-Peña M (2001) Systematics and reproductive biology of the genus Whiteringia L’ Hér. (Solanaceae). Unpublished D. Phil. Thesis, University of Connecticut, Storrs, CT.

Stebbins GL (1971) ‘Chromosomal evolution in higher plants.’ (E. Arnold: London)

Stiefkens L, Bernardello G (2005) Karyotype studies in Lycium sections Schistocalyx and Sclerocarpellum (Solanaceae). Edinburgh Journal of Botany 62, 53–67.
Karyotype studies in Lycium sections Schistocalyx and Sclerocarpellum (Solanaceae).Crossref | GoogleScholarGoogle Scholar |

Su B-N, Park EJ, Nikolic D, Santarsiero BD, Mesecar AD, Schunke Vigo J, Graham JG, Cabieses F, van Breemen RB, Fong HHS, Farnsworth NR, Pezzuto JM, Kinghonr AD (2003) Activity-guided isolation of novel norwithanolides from Deprea subtriflora with potential cancer chemopreventive activity. The Journal of Organic Chemistry 68, 2350–2361.
Activity-guided isolation of novel norwithanolides from Deprea subtriflora with potential cancer chemopreventive activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtlSrsbo%3D&md5=632f2e4c05cc292a24dcea473cc4a9ecCAS | 12636402PubMed |

Suda Y (1975) Somatic chromosome number and chromosomal morphology of Anemone hepatica L. var. japonica (Nakai) Ohwi. Cytologia 40, 693–711.

Zahlbruckner A (1892) Annalen des K. K. Naturhistorischen Hofmuseums 7, 1–10.

Zurita F, Jiménez R, Díaz de la Guardia R, Burgos M (1999) The relative rDNA content of a NOR determines its level of expression and its probability of becoming active. A sequential silver staining and in situ hybridization study. Chromosome Research 7, 563–570.
The relative rDNA content of a NOR determines its level of expression and its probability of becoming active. A sequential silver staining and in situ hybridization study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvVGitL8%3D&md5=f799ec15769488a9466e79c57e83f26eCAS | 10598572PubMed |