Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Morphology and biochemical characteristics of pistils in the staminate flowers of yellow horn during selective abortion

Yan Zhou A B , Shumin Gao A C , Xiaofang Zhang A , Hua Gao A , Qing Hu A , Yanru Song A , Yanhong Jiao A and Hongbo Gao A
+ Author Affiliations
- Author Affiliations

A College of Biological Sciences and Technology, Beijing Forestry University, 35 Tsinghua East Road, Haidian District, Beijing 100083, China.

B Beijing Institute of Landscape Architecture, 7A Huajiadi, Chaoyang District, Beijing 100102, China.

C Corresponding author. Email: gsm689@sohu.com

Australian Journal of Botany 60(2) 143-153 https://doi.org/10.1071/BT11210
Submitted: 18 August 2011  Accepted: 15 December 2011   Published: 16 March 2012

Abstract

Yellow horn (Xanthoceras sorbifolia Bunge), an andromonoecious woody plant, has both hermaphrodite and staminate flowers. Both stamens and pistils in hermaphrodite flowers develop normally, but the pistils are aborted and the stamens develop normally in staminate flowers. To investigate the anatomical and biochemical characteristics of the aborted pistils in staminate flowers, anatomical and biochemical assays were carried out. Microstructure, ultrastructure and their histochemistry were analysed. The hypotheses that amylase and endogenous hormones are involved in pistil abortion were tested by comparing the homochronous pistil tissues in both hermaphrodite and staminate flowers. We conclude that pistil abortion occurs at the meiosis stage of megasporocyte cells and programmed cell death in staminate flowers. Simultaneously, we observed that starch grains and protein abundance are of benefit to megasporocyte meiosis. Our study indicates that the low activity of amylase isozymes α3 and α4 will result in insufficient soluble sugars for pistil development. The endogenous hormones gibberellic acid (GA3) and abscisic acid (ABA) in the pistil of both staminate and hermaphrodite flowers at four stages were measured by gas chromatography–mass spectrometry. The results suggested that both ABA and GA3 are related to pistil abortion. In addition, a high ratio of GA3 and ABA exists in the stage of megasporocyte cells until the stage of megasporocyte meiosis I, which affects the normal activity of sucrose invertase and pistil development in staminate flowers. These results suggest that starch grains, proteins and endogenous hormones are important for pistil development and, as well, that pistil abortion in staminate flowers is related to the level of endogenous hormones and the activity of amylase isozymes.


References

Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131, 3357–3365.
Modulation of floral development by a gibberellin-regulated microRNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvVKmsb8%3D&md5=c0179ea9300b35be86832cb2ace81af4CAS |

Agashe B, Prasad CK, Siddiqi I (2002) Identification and analysis of DYAD: a gene required for meiotic chromosome organisation and female meiotic progression in Arabidopsis. Development 129, 3935–3943.

Albertini E, Marconi G, Reale L, Barcaccia G, Porceddu A, Ferranti F, Falcinelli M (2005) SERK and APOSTART, candidate genes for apomixis in Poa pratensis. Plant Physiology 138, 2185–2199.
SERK and APOSTART, candidate genes for apomixis in Poa pratensis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXps12lsb4%3D&md5=b3069039fd426b19bcea9a5fd2578e9cCAS |

Alcaraz ML, Hormaza JI, Rodrigo J (2010) Ovary starch reserves and pistil development in avocado (Persea americana). Physiologia Plantarum 140, 395–404.
Ovary starch reserves and pistil development in avocado (Persea americana).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFaru7bM&md5=81c4334553ebda4a3edb284d7fee07f2CAS |

Balanzá V, Navarrete M, Trigueros M (2006) Patterning the female side of Arabidopsis: the importance of hormones. Journal of Experimental Botany 57, 3457–3469.
Patterning the female side of Arabidopsis: the importance of hormones.Crossref | GoogleScholarGoogle Scholar |

Barrell PJ, Ueli G (2005) Confocal microscopy of whole ovules for analysis of reproductive development: the elongate1 mutant affects meiosis II. The Plant Journal 43, 309–320.
Confocal microscopy of whole ovules for analysis of reproductive development: the elongate1 mutant affects meiosis II.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntFCjsrY%3D&md5=9909c65ede5aed26b16a9f437cec3215CAS |

Bessler B (1996) Changes in habit and sex expression in tuberous begonia hybrids by use of GA3 and Benzylaminopurine. Gartenbauwissenschaft 61, 205–210.

Boissay E, Delaigue M, Sallaud C, Esnault R (1996) Predominant expression of a peroxidase gene in staminate flowers of Mercurialis annua. Physiologia Plantarum 96, 251–257.
Predominant expression of a peroxidase gene in staminate flowers of Mercurialis annua.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XivFektro%3D&md5=9c7d9e207bb7d0600e2fb15fad59df6bCAS |

Cai X, Xu SS (2007) Meiosis-driven genome variation in plants. Current Genomics 8, 151–161.
Meiosis-driven genome variation in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvFahu7o%3D&md5=2fda4bece55c936b93f43e533ba5c3b6CAS |

Cao D, Cheng H, Wu W, Soo HM, Peng J (2006) Gibberellin mobilizes distinct DELLA-dependent transcriptomes to regulate seed germination and floral development in Arabidopsis. Plant Physiology 142, 509–525.
Gibberellin mobilizes distinct DELLA-dependent transcriptomes to regulate seed germination and floral development in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFarsbbM&md5=50b6132968120f2bb77d7b3a584f0bbbCAS |

Caporali E, Carboni A, Galli MG (1994) Development of staminate and female flower in Asparagus officinalis. Sexual Plant Reproduction 7, 239–249.

Chan PK (2007) Acylation with diangeloyl groups at C21–22 positions in triterpenoid saponins is essential for cytotoxicity towards tumor cells. Biochemical Pharmacology 73, 341–350.
Acylation with diangeloyl groups at C21–22 positions in triterpenoid saponins is essential for cytotoxicity towards tumor cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Smsg%3D%3D&md5=dc32b123d051b005ed1e71ddb78c8bc7CAS |

Chen DW, Wang F, Gao AQ, Wang Q, Ding Q (2001) Effects of GA3 and ethylene on abortion of apricot flower. Acta Agriculturae Boreali-occidentalis Sinica 10, 52–55.

Coimbra S, Torrão L, Abreu I (2004) Programmed cell death induces male sterility in Actinidia deliciosa female flowers. Plant Physiology and Biochemistry 42, 537–541.
Programmed cell death induces male sterility in Actinidia deliciosa female flowers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFyku7Y%3D&md5=a64dd9177a1587eafe066229aec59be1CAS |

Grant S, Houben A, Vyskot B, Siroky J, Pan WH, Macas J, Saedler H (1994) Genetics of sex determination in flowering Plants. Developmental Genetics 15, 214–230.
Genetics of sex determination in flowering Plants.Crossref | GoogleScholarGoogle Scholar |

Hauser BA, Sun K, Oppenheimer DG (2006) Changes in mitochondrial membrane potential and accumulation of reactive oxygen species precede ultrastructural changes during ovule abortion. Planta 223, 492–499.
Changes in mitochondrial membrane potential and accumulation of reactive oxygen species precede ultrastructural changes during ovule abortion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivFWjsb4%3D&md5=693034446764321447096b9179806167CAS |

Hou X, Hu WW, Shen L, Lee LY, Tao Z, Han JH, Yu H (2008) Global identification of DELLA target genes during Arabidopsis flower development. Plant Physiology 147, 1126–1142.
Global identification of DELLA target genes during Arabidopsis flower development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslyis70%3D&md5=bc5ce26805b7f6eeb7f11ff062c6c8f2CAS |

Hui LD, Xiong Y, Ming CK (2003) Morphological changes in nucellar cells undergoing programmed cell death during pollen chamber formation in Ginkgo biloba. Acta Botanica Sinica 45, 53–63.

Ilarslan H, Horner HT, Palmer RG (2003) Megagametophyte abnormalities of near-isogenic female partial-sterile soybean mutants (Glycine max; Leguminosae). Journal of Plant Research 116, 141–149.

Irish EE (1996) Regulation of sex determination in maize. BioEssays 18, 363–369.
Regulation of sex determination in maize.Crossref | GoogleScholarGoogle Scholar |

Jones A (2000) Does the plant mitochondrion integrate cellular stress and regulate programmed cell death. Trends in Plant Science 5, 225–230.
Does the plant mitochondrion integrate cellular stress and regulate programmed cell death.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c3kvFaltw%3D%3D&md5=eb3d6a363aa38cb86a5dda9d531a318fCAS |

Jones AM (2001) Programmed cell death in development defense. Plant Physiology 125, 94–97.
Programmed cell death in development defense.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjslymtLc%3D&md5=6283bb3c86055ae0c789145792243a58CAS |

Kaneko M, Inukai Y, Ueguchi-Tanaka M, Itoh H, Izawa T, Kobayashi Y, Hattori T, Miyao A, Hirochika H, Ashikari M, Matsuoka M (2004) Loss-of-function mutations of the rice GAMYB gene impair alpha-amylase expression in aleurone and flower development. The Plant Cell 16, 33–44.
Loss-of-function mutations of the rice GAMYB gene impair alpha-amylase expression in aleurone and flower development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXosVemtQ%3D%3D&md5=79c978011ac357fe33c560d6f51f190cCAS |

Khryanin VN (2002) Role of phytohormones in sex differentiation in plants. Russian Journal of Plant Physiology: a Comprehensive Russian Journal on Modern Phytophysiology 49, 545–551.
Role of phytohormones in sex differentiation in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltlOmtr8%3D&md5=bcc706ebfdbc2c6863e1fb37cb55a32cCAS |

Ku S, Yoon H, Suh HS, Chung Y-Y (2003) Male-sterility of thermosensitive genic male-sterile rice is associated with premature programmed cell death of the tapetum. Planta 217, 559–565.
Male-sterility of thermosensitive genic male-sterile rice is associated with premature programmed cell death of the tapetum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtVWgsLg%3D&md5=ab59a7d6aa22f40f768865d8050cdb93CAS |

Lam E, Kato N, Lawton M (2001) Programmed cell death, mitochondria and the hypersensitive response. Nature 411, 848–853.
Programmed cell death, mitochondria and the hypersensitive response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksF2nsrg%3D&md5=947850ce5deaccd21ac429f78bb0fa9eCAS |

Li N, Zhang DS, Liu HS (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. The Plant Cell 18, 2999–3014.
The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1CltQ%3D%3D&md5=fe7c9fa8f601b3791f63ac99461fa920CAS |

Li Q, Rong X, Wu XL (2008) Functional divergence of the duplicated AtKIN14a and AtKIN14b genes: critical roles in Arabidopsis meiosis and gametophyte development. The Plant Journal 53, 1013–1026.

Li W, Li X, Yang J (2008) Two new triterpenoid saponins from the carpophore of Xanthoceras sorbifolia Bunge. Journal of Asian Natural Products Research 10, 260–264.
Two new triterpenoid saponins from the carpophore of Xanthoceras sorbifolia Bunge.Crossref | GoogleScholarGoogle Scholar |

Li ZL, Li X, Li LH, Li N, Yu M, Meng DL (2005) Two new triterpenes from the husks of Xanthoceras sorbifolia. Planta Medica 71, 1068–1070.
Two new triterpenes from the husks of Xanthoceras sorbifolia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlegsL7F&md5=ba7eb5442d5c57d8a215a8871a991422CAS |

Li ZL, Yang BZ, Li X, Wang SJ, Li N, Wang Y (2006) Triterpenoids from the husks of Xanthoceras sorbifolia Bunge. Journal of Asian Natural Products Research 8, 361–366.
Triterpenoids from the husks of Xanthoceras sorbifolia Bunge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntlWguro%3D&md5=fe65a4cbcd17c46753bc70c2e9514c5aCAS |

Li ZL, Li X, Li DY (2007) Triterpenoid prosapogenols and prosapogenins from the husks of Xanthoceras sorbifolia. Journal of Asian Natural Products Research 9, 387–392.
Triterpenoid prosapogenols and prosapogenins from the husks of Xanthoceras sorbifolia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnt1Wiur4%3D&md5=dc8aa1fce0d6515c57e6b6422c5b11d5CAS |

Ma C, Nakamura N, Hattori M, Kakuda H, Qiao J, Yu H (2000) Inhibitory effects on HIV-1 protease of constituents from the wood of Xanthoceras sorbifolia. Journal of Natural Products 63, 238–242.
Inhibitory effects on HIV-1 protease of constituents from the wood of Xanthoceras sorbifolia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVSjsw%3D%3D&md5=e4e0ff732315a43d3b6ed2d1993005d4CAS |

Ma K, Gao SM (2004) Anatomy of stamen and male sterility-associated proteins in Xanthoceras sorbifolia Bunge. Journal of Beijing Forestry University 26, 40–43.

Makwana V, Shukla P, Robin P (2010) GA application induces alteration in sex ratio and cell death in Jatropha curcas. Plant Growth Regulation 61, 121–125.
GA application induces alteration in sex ratio and cell death in Jatropha curcas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1Olsrc%3D&md5=dfa7e913b5e8e3f91738118f8262a533CAS |

Mamun EA, Alfred S, Cantrill LC (2006) Effects of chilling on staminate gametophyte development in rice. Cell Biology International 30, 583–591.
Effects of chilling on staminate gametophyte development in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xns12rtbY%3D&md5=8db1766f6c20f91368a4cc149dd72762CAS |

Michel B, Pascale K, Ferruccio G (2002) Bacillus thuringiensis (Bt) for the control of insect pests in stored tobacco:a review. Beiträge zur Tabak- forschung International 20, 15–20.

Murai K, Takumi S, Koga H (2002) Pistillody, homeotic transformation of stamens into pistil-like structures, caused by nuclear-cytoplasm interaction in wheat. The Plant Journal 29, 169–181.
Pistillody, homeotic transformation of stamens into pistil-like structures, caused by nuclear-cytoplasm interaction in wheat.Crossref | GoogleScholarGoogle Scholar |

Newmeyer DD, Ferguson-Miller S (2003) Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112, 481–490.
Mitochondria: releasing power for life and unleashing the machineries of death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1SnsLs%3D&md5=db651c61692875cbcf53b3d0a63570e5CAS |

Obara K, Kuriyama H, Fukuda H (2001) Direct evidence of active and rapid nuclear degradation triggered by vacuole rupture during programmed cell death in Zinnia. Plant Physiology 125, 615–626.
Direct evidence of active and rapid nuclear degradation triggered by vacuole rupture during programmed cell death in Zinnia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhs1Kls7s%3D&md5=0563432bd275280f304de63d4fe3bba9CAS |

Papini A, Mosti S, Milocani E, Tani G, Di Falco P, Brighigna L (2011) Megasporogenesis and programmed cell death in Tillandsia (Bromeliaceae). Protoplasma 248, 651–662.

Peng WX, Li FL (1999) The study on the sterile anther and pollen of Xanthoceras sorbifolia. Journal of Agricultural University of Heber 22, 35–37.

Pennell RI, Lamb C (1997) Programmed cell death in plants. The Plant Cell 9, 1157–1168.
Programmed cell death in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlt1Shtbo%3D&md5=abfee244082a2d61dbcde8b643b4e29dCAS |

Reale L, Sgromo C, Ederli L (2009) Morphological and cytological development and starch accumulation in hermaphrodite and staminate flowers of olive (Olea europaea L). Sexual Plant Reproduction 22, 109–119.
Morphological and cytological development and starch accumulation in hermaphrodite and staminate flowers of olive (Olea europaea L).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVaqsbvI&md5=6bd9335d96a092e995abc661876ed594CAS |

Reape TJ, McCabe PF (2010) Apoptotic-like regulation of programmed cell death in plants. Apoptosis 15, 249–256.
Apoptotic-like regulation of programmed cell death in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivFKgu7Y%3D&md5=ea96ed1a10116d13709bf8bab0dd2879CAS |

Ronemus MJ, Galbiati M, Ticknor C (1996) Demethylation-induced developmental pleiotropy in Arabidopsis. Science 273, 654–657.
Demethylation-induced developmental pleiotropy in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xks1yntbw%3D&md5=1ae7b248c0f36101078ff815493f28ecCAS |

Sandhu SK, Gupta VP (2000) Interspecific hybridization among digenomic species of Brassica. Crop Improvement 27, 195–197.

Serrano I, Pelliccione S, Olmedilla A (2010) Programmed-cell-death hallmarks in incompatible pollen and papillar stigma cells of Olea europaea L. under free pollination. Plant Cell Reports 29, 573
Programmed-cell-death hallmarks in incompatible pollen and papillar stigma cells of Olea europaea L. under free pollination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtV2jurw%3D&md5=f6014a95737db2aa7204962c9c4dae00CAS |

Siddiqi I, Ganesh G, Grossniklaus U (2000) The dyad gene is required for progression through female meiosis in Arabidopsis. Development 127, 197–207.

Sun K, Hunt K, Hauser BA (2004) Ovule abortion in Arabidopsis triggered by stress. Plant Physiology 135, 2358–2367.
Ovule abortion in Arabidopsis triggered by stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt1Ggsbo%3D&md5=e1be0300cfdf6c0a14a24cde1851f7f8CAS |

Thomas TD (2008) The effect of in vivo and in vitro applications of ethrel and GA3 on sex expression in bitter melon (Momordica charantia L.). Euphytica 164, 317–323.
The effect of in vivo and in vitro applications of ethrel and GA3 on sex expression in bitter melon (Momordica charantia L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFOgtLrN&md5=c12cedb929b7a50e8ff53a05084dd9c5CAS |

Vanlerberghe GC, Robson CA, Yip JY (2002) Induction of mitochondrial alternative oxidase in response to a cell signal pathway down-regulating the cytochrome pathway prevents programmed cell death. Plant Physiology 129, 1829–1842.
Induction of mitochondrial alternative oxidase in response to a cell signal pathway down-regulating the cytochrome pathway prevents programmed cell death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmtl2gtLo%3D&md5=6daf27208a5268d51421f48b3a36b7faCAS |

Wu H, Cheung AY (2000) Programmed cell death in plant reproduction. Plant Molecular Biology 44, 267–281.
Programmed cell death in plant reproduction.Crossref | GoogleScholarGoogle Scholar |

Xiao HS, Lu LX, Chen ZT (2003) Dynamic changes of endogenous hormonein litchi (Litchi chinensis Sonn.) pistil and stamen during flower development. Chinese Journal of Applied and Environmental Biology 9, 11–15.

Yao JL, Fu CH (2000) Abnormal phenomena during embryo development in Prunus salicina. Journal of Huazhong Agricultural University 19, 71–73.

Yin TJ, Quinn JA (1995) Tests of a mechanistic model of one hormone regulating both sexes in Cucumis sativus (Cucurbitaceae). American Journal of Botany 82, 1537–1546.
Tests of a mechanistic model of one hormone regulating both sexes in Cucumis sativus (Cucurbitaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksFOrtw%3D%3D&md5=1aa80274b053ce581f257a1fa16a57c6CAS |

Zhang S, Zu YG, Fu YJ, Luo M, Zhang DY, Efferth T (2010a) Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst. Bioresource Technology 101, 931–936.
Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWntrzF&md5=e21223809af522f601bf6771ff4500b7CAS |

Zhang S, Zu YG, Fu YJ, Luo M, Liu W, Li J, Efferth T (2010b) Supercritical carbon dioxide extraction of seed oil from yellow horn (Xanthoceras sorbifolia Bunge) and its anti-oxidant activity. Bioresource Technology 101, 2537–2544.
Supercritical carbon dioxide extraction of seed oil from yellow horn (Xanthoceras sorbifolia Bunge) and its anti-oxidant activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtl2q&md5=b98e03692cfbad7d6c75de8e3ae11811CAS |

Zhu XH, Cao XZ (1992) Studies on gametophytic fertility of indica-japonica hybrids in rice. Chinese Rice Research Newsletter 5, 3–4.