Pollen morphology of the Myrtaceae. Part 4: tribes Kanieae, Myrteae and Tristanieae
Andrew H. Thornhill A D , Geoff S. Hope B , Lyn A. Craven C and Michael D. Crisp AA Division of Evolution, Ecology and Genetics, Research School of Biology, Building 116, Daley Road, The Australian National University, Canberra, ACT 0200, Australia.
B Department of Archaeology and Natural History, College of Asia and the Pacific, The Australian National University, Canberra, ACT 0200, Australia.
C Australian National Herbarium, CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia.
D Corresponding author. Email: Andrew.Thornhill@anu.edu.au
Australian Journal of Botany 60(3) 260-289 https://doi.org/10.1071/BT11177
Submitted: 4 July 2011 Accepted: 9 January 2012 Published: 11 April 2012
Abstract
Pollen morphology of 44 genera and 101 species from the Myrtaceae tribes Kanieae, Myrteae and Tristanieae was surveyed using scanning electron microscopy (SEM) and light microscopy (LM). Most Myrteae pollen were brevicolpate and granulate, which is unique within Myrtaceae, and these are most likely ancestral characters for this tribe. Two main pollen types were observed in tribe Kanieae, one form being with syncolpate colpi and a distinctive granulate exine, and the other with parasyncolpate colpi and a less ornamented exine. Genera Tristania and Thaleropia of tribe Tristanieae produce the smallest pollen in Myrtaceae, whereas Octamyrtus of tribe Myrteae produces the largest pollen observed in Myrtaceae.
References
Barth OM, Barbosa AF (1972) Catalogo sistematico do polens das plantas arborea do Brasil meridional XV Myrtaceae. Memorias do Instituto Oswaldo Cruz 70, 467–497.Biffin E, Harrington MG, Crisp MD, Craven LA, Gadek PA (2007) Structural partitioning, paired-sites models and evolution of the ITS transcript in Syzygium and Myrtaceae. Molecular Phylogenetics and Evolution 43, 124–139.
| Structural partitioning, paired-sites models and evolution of the ITS transcript in Syzygium and Myrtaceae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjslGrsrs%3D&md5=8ee86aaeac093aa8b2af2bfe43499999CAS |
Biffin E, Lucas EJ, Craven LA, da-Costa IR, Harrington MG, Crisp MD (2010) Evolution of exceptional species richness among lineages of fleshy-fruited Myrtaceae. Annals of Botany 106, 79–93.
| Evolution of exceptional species richness among lineages of fleshy-fruited Myrtaceae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVWjsLk%3D&md5=2103f39a93786b295cd4f884d2b915f5CAS |
Chalson JM, Martin HA (1995) The pollen morphology of some co-occurring species of the family Myrtaceae from the Sydney region. Proceedings of the Linnean Society of New South Wales 115, 163–191.
Fujiki T, Ozawa T (2007) ‘The pollen flora of Ryukyu, Japan.’ (Aqua Coral Planning: Ginowan City, Okinawa, Japan)
Gadek PA, Martin HA (1981) Pollen morphology in the subtribe Metrosiderinae of the Leptospermoideae (Myrtaceae) and its taxonomic significance. Australian Journal of Botany 29, 159–184.
| Pollen morphology in the subtribe Metrosiderinae of the Leptospermoideae (Myrtaceae) and its taxonomic significance.Crossref | GoogleScholarGoogle Scholar |
Gadek PA, Martin HA (1982) Exine ultrastructure of Myrtaceous pollen. Australian Journal of Botany 30, 75–86.
| Exine ultrastructure of Myrtaceous pollen.Crossref | GoogleScholarGoogle Scholar |
Graham A (1980) Morfologia del polen de Eugenia–Myrcia (Myrtaceae) y Combretum-Terminalia (Combretaceae) en relacion a su alcance estratigrafico en el Terciario del Caribe. Biotica 5, 5–14.
Hesse M, Halbritter H, Zetter R, Weber M, Buchner R, Frosch-Radivo A, Ulrich S (2009) ‘Pollen terminology: an illustrated handbook.’ (Springer Wien: New York)
Kevan PG, Lack AJ (1985) Pollination in a cryptically dioecious plant Decaspermum parviflorum (Lam) Scott (Myrtaceae) by pollen-collecting bees in Sulawesi, Indonesia. Biological Journal of the Linnean Society. Linnean Society of London 25, 319–330.
| Pollination in a cryptically dioecious plant Decaspermum parviflorum (Lam) Scott (Myrtaceae) by pollen-collecting bees in Sulawesi, Indonesia.Crossref | GoogleScholarGoogle Scholar |
Lieu J, Melhem TS (1973) Palinologia em Myrtaeae. Hoehnea 3, 1–11.
Lucas EJ, Harris SA, Mazine FF, Bellsham SR, Lughadha EMN, Telford A, Gasson PE, Chase MW (2007) Suprageneric phylogenetics of Myrteae, the generically richest tribe in Myrtaceae (Myrtales). Taxon 56, 1105–1128.
| Suprageneric phylogenetics of Myrteae, the generically richest tribe in Myrtaceae (Myrtales).Crossref | GoogleScholarGoogle Scholar |
Markgraf V, D’Antoni HL (1978) ‘Pollen flora of Argentina: modern spore and pollen types of Pteridophyta, Gymnospermae, and Angiospermae.’ (University of Arizona Press: Tucson, AZ)
McIntyre DJ (1963) Pollen morphology of New Zealand species of Myrtaceae. Transactions of the Royal Society of New Zealand 2, 83–107.
Moar NT (1993) ‘Pollen grains of New Zealand dicotyledonous plants.’ (Manaaki Whenua Press: Lincoln, New Zealand)
Patel VC, Skvarla JJ, Raven PH (1984) Pollen characters in relation to the delimitation of Myrtales. Annals of the Missouri Botanical Garden 71, 858–969.
| Pollen characters in relation to the delimitation of Myrtales.Crossref | GoogleScholarGoogle Scholar |
Pike KM (1956) Pollen morphology of Myrtaceae from the south-west Pacific area. Australian Journal of Botany 4, 13–53.
| Pollen morphology of Myrtaceae from the south-west Pacific area.Crossref | GoogleScholarGoogle Scholar |
Premathilake R, Nilsson S (2001) Pollen morphology of endemic species of the Horton Plains National Park, Sri Lanka. Grana 40, 256–279.
| Pollen morphology of endemic species of the Horton Plains National Park, Sri Lanka.Crossref | GoogleScholarGoogle Scholar |
Thornhill AH, Hope G, Craven LA, Crisp MD (2012a) Pollen morphology of the Myrtaceae. Part 1: tribes Eucalypteae, Lophostemoneae, Syncarpieae, Xanthostemoneae and subfamily Psiloxyloideae. Australian Journal of Botany 60,
| Pollen morphology of the Myrtaceae. Part 1: tribes Eucalypteae, Lophostemoneae, Syncarpieae, Xanthostemoneae and subfamily Psiloxyloideae.Crossref | GoogleScholarGoogle Scholar |
Thornhill AH, Hope G, Craven LA, Crisp MD (2012b) Pollen morphology of the Myrtaceae. Part 2: tribes Backhousieae, Melaleuceae, Metrosidereae, Osbornieae and Syzygieae. Australian Journal of Botany 60,
| Pollen morphology of the Myrtaceae. Part 2: tribes Backhousieae, Melaleuceae, Metrosidereae, Osbornieae and Syzygieae.Crossref | GoogleScholarGoogle Scholar |
Thornhill AH, Wilson PG, Drudge J, Hope G, Craven LA, Crisp MD (2012c) Pollen morphology of the Myrtaceae. Part 3: tribes Chamelaucieae, Leptospermeae and Lindsayomyrteae. Australian Journal of Botany 60,
| Pollen morphology of the Myrtaceae. Part 3: tribes Chamelaucieae, Leptospermeae and Lindsayomyrteae.Crossref | GoogleScholarGoogle Scholar |
van Wyk AE, Dedekind I (1985) The genus Eugenia (Myrtaceae) in southern-Africa: morphology and taxonomic value of pollen. South African Journal of Botany 51, 371–378.
Wilson PG, O’Brien MM, Heslewood MM, Quinn CJ (2005) Relationships within Myrtaceae sensu lato based on a matK phylogeny. Plant Systematics and Evolution 251, 3–19.
| Relationships within Myrtaceae sensu lato based on a matK phylogeny.Crossref | GoogleScholarGoogle Scholar |
Zhou MM, Heusser CJ (1996) Late-glacial palynology of the Myrtaceae of southern Chile. Review of Palaeobotany and Palynology 91, 283–315.
| Late-glacial palynology of the Myrtaceae of southern Chile.Crossref | GoogleScholarGoogle Scholar |