Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Pollen morphology of the Myrtaceae. Part 1: tribes Eucalypteae, Lophostemoneae, Syncarpieae, Xanthostemoneae and subfamily Psiloxyloideae

Andrew H. Thornhill A D , Geoff S. Hope B , Lyn A. Craven C and Michael D. Crisp A
+ Author Affiliations
- Author Affiliations

A Division of Evolution, Ecology and Genetics, Research School of Biology, Building 116, Daley Road, The Australian National University, Canberra, ACT 0200, Australia.

B Department of Archaeology and Natural History, College of Asia and the Pacific, The Australian National University, Canberra, ACT 0200, Australia.

C Australian National Herbarium, CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia.

D Corresponding author. Email: Andrew.Thornhill@anu.edu.au

Australian Journal of Botany 60(3) 165-199 https://doi.org/10.1071/BT11174
Submitted: 4 July 2011  Accepted: 9 January 2012   Published: 10 April 2012

Abstract

A family-wide palynological study of Myrtaceae was conducted using scanning electron microscopy (SEM) and light microscopy (LM). In this part of the study, the pollen morphology of 18 genera and 150 species from the Myrtaceae tribes of subfamily Myrtoideae, Eucalypteae, Lophostemoneae, Syncarpieae, Xanthostemoneae and subfamily Psiloxyloideae are presented. It was found that the most commonly observed pollen in these groups was parasyncolpate with a rugulate exine, whereas some species possessed an apocolpial island. The large, and sometimes syndemicolpate, pollen of Eucalypteae genera Angophora and Corymbia differed from all other genera. Most Eucalyptus pollen had endopores with a thickened exine.


References

Askin RA (1990) Campanian to Paleocene spore and pollen assemblages of Seymour Island, Antarctica. Review of Palaeobotany and Palynology 65, 105–113.
Campanian to Paleocene spore and pollen assemblages of Seymour Island, Antarctica.Crossref | GoogleScholarGoogle Scholar |

Barth OM, Barbosa AF (1972) Catalogo sistematico do polens das plantas arborea do Brasil meridional. XV. Myrtaceae. Memorias do Instituto Oswaldo Cruz 70, 467–497.

Biffin E, Harrington MG, Crisp MD, Craven LA, Gadek PA (2007) Structural partitioning, paired-sites models and evolution of the ITS transcript in Syzygium and Myrtaceae. Molecular Phylogenetics and Evolution 43, 124–139.
Structural partitioning, paired-sites models and evolution of the ITS transcript in Syzygium and Myrtaceae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjslGrsrs%3D&md5=8ee86aaeac093aa8b2af2bfe43499999CAS |

Biffin E, Lucas EJ, Craven LA, da-Costa IR, Harrington MG, Crisp MD (2010) Evolution of exceptional species richness among lineages of fleshy-fruited Myrtaceae. Annals of Botany 106, 79–93.
Evolution of exceptional species richness among lineages of fleshy-fruited Myrtaceae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVWjsLk%3D&md5=2103f39a93786b295cd4f884d2b915f5CAS |

Boltenhagen E (1976) Pollens et spores senoniens du Gabon. Cahiers de Micropaleontologie 3, 1–21.

Boyd WE (1992) ‘A pollen flora of the native plants of South Australia and southern Northern Territory, Australia.’ (The University of Adelaide: Adelaide)

Chalson JM, Martin HA (1995) The pollen morphology of some co-occurring species of the family Myrtaceae from the Sydney region. Proceedings of the Linnean Society of New South Wales 115, 163–191.

Churchill DM (1968) The Distribution and Prehistory of Eucalyptus diversicolor, E. marginata and E. calophylla in relation to rainfall. Australian Journal of Botany 16, 125–151.
The Distribution and Prehistory of Eucalyptus diversicolor, E. marginata and E. calophylla in relation to rainfall.Crossref | GoogleScholarGoogle Scholar |

Cookson IC, Pike KM (1954) Some dicotyledonous pollen types from Cainozoic deposits in the Australian region. Australian Journal of Botany 2, 197–219.

Couper RA (1960) ‘New Zealand Mesozoic and Cainozoic plant microfossils.’ (R. E. Owen, Government Printer: Wellington, New Zealand)

Dodson JR (1974) Vegetation history and water fluctuations at Lake Leake, south-eastern South Australia. I. 10 000 BP to present. Australian Journal of Botany 22, 719–741.
Vegetation history and water fluctuations at Lake Leake, south-eastern South Australia. I. 10 000 BP to present.Crossref | GoogleScholarGoogle Scholar |

Eliseu SA, Dinis AM (2008) Ultrastructure and cytochemistry of Eucalyptus globulus (Myrtaceae) pollen grain. Grana 47, 39–51.
Ultrastructure and cytochemistry of Eucalyptus globulus (Myrtaceae) pollen grain.Crossref | GoogleScholarGoogle Scholar |

Erdtman G (1966) ‘Pollen morphology and plant taxonomy. Angiosperms.’ (Hafner Publishing Company: New York)

Gadek PA, Martin HA (1981) Pollen morphology in the subtribe Metrosiderinae of the Leptospermoideae (Myrtaceae) and its taxonomic significance. Australian Journal of Botany 29, 159–184.
Pollen morphology in the subtribe Metrosiderinae of the Leptospermoideae (Myrtaceae) and its taxonomic significance.Crossref | GoogleScholarGoogle Scholar |

Gadek PA, Martin HA (1982) Exine ultrastructure of Myrtaceous pollen. Australian Journal of Botany 30, 75–86.
Exine ultrastructure of Myrtaceous pollen.Crossref | GoogleScholarGoogle Scholar |

Haberle SG, Rowe C, Hungerford S, Preston T, Warren P, Hope GS, Hopf F, Thornhill AH, Stevenson J (2007) ‘The Australasian pollen and spore atlas. V1.0.’ (Australian National University: Canberra)

Hope G, Singh G, Geissler E, Glover L, O’Dea D (2000) A detailed Pleistocene–Holocene vegetation record from Bega Swamp, southern New South Wales. In ‘Quaternary studies meeting. Regional analysis of Australian Quaternary studies: strengths, gaps and future directions’. (Eds J Magee, C Craven) pp. 48–50. (Department of Geology, Australian National University: Canberra)

Jarzen DM (1982) Angiosperm pollen from the Ravenscrag formation (Paleocene), southern Saskatchewan, Canada. Pollen et Spores 24, 119–155.

Johnson LAS, Briggs BG (1984) Myrtales and Myrtaceae – A phylogenetic analysis. Annals of the Missouri Botanical Garden 71, 700–756.
Myrtales and Myrtaceae – A phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar |

Ladd PG, Parnell JAN, Thompson G (2000) The morphology of pollen and anthers in an unusual myrtaceous genus (Verticordia). In ‘Pollen and spores: morphology and biology’. (Eds MM Harley, CM Morton, S Blackmore) pp. 325–47. (Royal Botanic Gardens, Kew: London)

Ladiges PY, Udovicic F, Nelson G (2003) Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae. Journal of Biogeography 30, 989–998.
Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae.Crossref | GoogleScholarGoogle Scholar |

Lieu J, Melhem TS (1973) Palinologia em Myrtaeae. Hoehnea 3, 1–11.

Macphail MK, Truswell EM (1993) Palynostratigraphy of the Bookpurnong Beds and related Late Miocene–Early Pliocene facies in the central west Murray Basin, Part 2: spores and pollens. AGSO Journal of Australian Geology & Geophysics 14, 383–409.

Markgraf V, D’Antoni HL (1978) ‘Pollen flora of Argentina: modern spore and pollen types of Pteridophyta, Gymnospermae, and Angiospermae.’ (University of Arizona Press: Tucson, AZ)

Martin HA (1973a) Palynology and historical ecology of some cave excavations in Australian-Nullarbor. Australian Journal of Botany 21, 283–316.
Palynology and historical ecology of some cave excavations in Australian-Nullarbor.Crossref | GoogleScholarGoogle Scholar |

Martin HA (1973b) Palynology of some Tertiary and Pleistocene deposits, Lachlan River Valley, New South Wales. Australian Journal of Botany Supplementary Series 6, 1–57.

Martin HA (1978) Evolution of the Australian flora and vegetation through the Tertiary: evidence from pollen. Alcheringa 2, 181–202.
Evolution of the Australian flora and vegetation through the Tertiary: evidence from pollen.Crossref | GoogleScholarGoogle Scholar |

Martin HA, Gadek PA (1988) Identification of Eucalyptus spathulata pollen and its presence in the fossil record. Memoirs of the Association of Australasian Palaeontologists 5, 311–327.

McIntyre DJ (1963) Pollen morphology of New Zealand Species of Myrtaceae. Transactions of the Royal Society of New Zealand 2, 83–107.

McWhae KM (1957) A note on the pollen of Whiteodendron and Kjellbergiodendron (Myrtaceae). Reinwardtia 4, 189–191.

Moar NT (1993) ‘Pollen grains of New Zealand dicotyledonous plants.’ (Manaaki Whenua Press: Lincoln, New Zealand)

Muller J (1968) Palynology of the Pedawan and Plateau sandstone formations (Cretaceous–Eocene) in Sarawak, Malaysia. Micropaleontology 14, 1–37.
Palynology of the Pedawan and Plateau sandstone formations (Cretaceous–Eocene) in Sarawak, Malaysia.Crossref | GoogleScholarGoogle Scholar |

Muller J (1981) Fossil pollen records of extant angiosperms. Botanical Review 47, 1–142.

Parnell J (2003) Pollen of Syzygium (Myrtaceae) from SE Asia, especially Thailand. Blumea 48, 303–317.

Patel VC, Skvarla JJ, Raven PH (1984) Pollen characters in relation to the delimitation of Myrtales. Annals of the Missouri Botanical Garden 71, 858–969.
Pollen characters in relation to the delimitation of Myrtales.Crossref | GoogleScholarGoogle Scholar |

Pickett EJ, Newsome JC (1997) Eucalyptus (Myrtaceae) pollen and its potential role in investigations of Holocene environments in southwestern Australia. Review of Palaeobotany and Palynology 98, 187–205.
Eucalyptus (Myrtaceae) pollen and its potential role in investigations of Holocene environments in southwestern Australia.Crossref | GoogleScholarGoogle Scholar |

Pike KM (1956) Pollen morphology of Myrtaceae from the south-west Pacific area. Australian Journal of Botany 4, 13–53.
Pollen morphology of Myrtaceae from the south-west Pacific area.Crossref | GoogleScholarGoogle Scholar |

Potonié R (1960) Synopsis der Gattungen der sporae dispersae III. Beihefte zum Geologischen Jahrbuch 39, 1–189.

Punt W, Hoen PP, Blackmore S, Nilsson S, Le Thomas A (2007) Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology 143, 1–81.
Glossary of pollen and spore terminology.Crossref | GoogleScholarGoogle Scholar |

Schmid R (1980) Comparative anatomy and morphology of Psiloxylon and Heteropyxis, and the subfamilial and tribal classification of Myrtaceae. Taxon 29, 559–595.
Comparative anatomy and morphology of Psiloxylon and Heteropyxis, and the subfamilial and tribal classification of Myrtaceae.Crossref | GoogleScholarGoogle Scholar |

Steane DA, McKinnon GE, Vaillancourt RE, Potts BM (1999) ITS sequence data resolve higher level relationships among the eucalypts. Molecular Phylogenetics and Evolution 12, 215–223.
ITS sequence data resolve higher level relationships among the eucalypts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvFWrsbk%3D&md5=90f43edd29d6ae6db9adabb6fea1fbd7CAS |

Sweet AR (1986) The Cretaceous Tertiary boundary in the central Alberta foothills. 2. Miospore and pollen taxonomy. Canadian Journal of Earth Sciences 23, 1375–1388.
The Cretaceous Tertiary boundary in the central Alberta foothills. 2. Miospore and pollen taxonomy.Crossref | GoogleScholarGoogle Scholar |

Sytsma KJ, Litt A, Zjhra ML, Pires JC, Nepokroeff M, Conti E, Walker J, Wilson PG (2004) Clades, clocks, and continents: historical and biogeographical analysis of Myrtaceae, Vochysiaceae, and relatives in the southern hemisphere. International Journal of Plant Sciences 165, S85–S105.
Clades, clocks, and continents: historical and biogeographical analysis of Myrtaceae, Vochysiaceae, and relatives in the southern hemisphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptFOhurk%3D&md5=36adda6e24136adec32ee37b32f64dd8CAS |

Thornhill AH (2010) Can Myrtaceae pollen of the Holocene from Bega Swamp (New South Wales, Australia) be compared with extant taxa? Terra Australis 32, 405–427.

Thornhill AH, Macphail M (in press) Fossil myrtaceous pollen as evidence for the evolutionary history of the Myrtaceae: A review of fossil Myrtaceidites species. Review of Palaeobotany and Palynology.

Thornhill AH, Popple LW, Carter RJ, Ho SYW, Crisp MD (2012a) Are pollen fossils useful for calibrating relaxed molecular clock dating of phylogenies? A comparative study using Myrtaceae. Molecular Phylogenetics and Evolution 63, 15–27.
Are pollen fossils useful for calibrating relaxed molecular clock dating of phylogenies? A comparative study using Myrtaceae.Crossref | GoogleScholarGoogle Scholar |

Thornhill AH, Wilson PG, Drudge J, Barrett MD, Hope GS, Craven LA, Crisp MD (2012b) Pollen morphology of the Myrtaceae. Part 3: tribes Chamelaucieae, Leptospermeae and Lindsayomyrteae. Australian Journal of Botany 65,
Pollen morphology of the Myrtaceae. Part 3: tribes Chamelaucieae, Leptospermeae and Lindsayomyrteae.Crossref | GoogleScholarGoogle Scholar |

van der Hammen T (1954) El desarrollo de las flora Colombiana en los periodos geologicos 1. Maestrichtiano hasta Terciario mas inferior. Boletin Geologico (Bogota) 2, 49–106.

Wilson PG (2011) Myrtaceae. In ‘The Families and genera of vascular plants. Vol. X. Flowering plants Eudicots: Sapindales, Cucurbitales, Myrtaceae’. (Ed. K Kubitzki) pp. 212–271. (Springer-Verlag: Heidelberg)

Wilson PG, O’Brien MM, Heslewood MM, Quinn CJ (2005) Relationships within Myrtaceae sensu lato based on a matK phylogeny. Plant Systematics and Evolution 251, 3–19.
Relationships within Myrtaceae sensu lato based on a matK phylogeny.Crossref | GoogleScholarGoogle Scholar |

Zhou MM, Heusser CJ (1996) Late-glacial palynology of the Myrtaceae of southern Chile. Review of Palaeobotany and Palynology 91, 283–315.
Late-glacial palynology of the Myrtaceae of southern Chile.Crossref | GoogleScholarGoogle Scholar |