Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Diversification history and hybridisation of Dacrydium (Podocarpaceae) in remote Oceania

Gunnar Keppel A B H , Peter Prentis C , Ed Biffin C , Paul Hodgskiss D , Susana Tuisese E , Marika V. Tuiwawa F and Andrew J. Lowe C G
+ Author Affiliations
- Author Affiliations

A Ecology Center, School of Integrative Biology, University of Queensland, St Lucia, Brisbane, Qld 4072, Australia.

B Present address: Curtin Institute for Climate and Biodiversity, Department of Environment and Agriculture, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.

C Australian Centre for Evolutionary Biology and Biodiversity, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia.

D USDA Forest Service, Pacific Southwest Research Station, Institute of Forest Genetics, Davis, CA 95618, USA.

E Tropik Wood Industries Ltd, Lautoka, Fiji.

F South Pacific Regional Herbarium, University of the South Pacific, PO Box 1168, Suva, Fiji.

G State Herbarium of South Australia, Science Resource Centre, Department for Environment and Natural Resources, Hackney Road, Adelaide, SA 5005, Australia.

H Corresponding author. Email: G.Keppel@curtin.edu.au

Australian Journal of Botany 59(3) 262-273 https://doi.org/10.1071/BT10181
Submitted: 16 July 2010  Accepted: 19 February 2011   Published: 9 May 2011

Abstract

We examined evolutionary relationships, hybridisation and genetic diversity in species of Dacrydium (Podocarpaceae) in Remote Oceania, where it is restricted to New Caledonia and Fiji. We used cpDNA sequence (trnL–trnF) data to construct a phylogeny and estimate taxon divergence by using a relaxed molecular clock approach. The phylogeny was verified using allozymes, which were also used to investigate genetic diversity of all species and the hybridisation dynamics of two endangered species, D. guillauminii and D. nidulum. Our results suggested that Dacrydium species in Remote Oceania form a monophyletic group that arose and diversified within the last 20 million years through long-distance dispersal and a range of speciation mechanisms. Whereas we detected no hybridisation between the Fijian species D. nausoriense and D. nidulum, we confirmed hybridisation between D. guillauminii and D. araucarioides in New Caledonia and determined introgression to be assymetric from the widespread D. araucarioides into the rare, restricted-range species D. guillauminii. In addition, D. guillauminii had lower genetic diversity than did the other species of Dacrydium studied, which had genetic diversity similar to that of other gymnosperms. Our results provided evidence for the recent and complex diversification of Dacrydium in Remote Oceania. In addition, low genetic diversity of and introgression from D. araucarioides, are of grave concern for the conservation of D. guillauminii.


References

Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160, 1217–1229.

Ash J (1986) Growth rings, age and taxonomy of Dacrydium (Podocarpaceae) in Fiji. Australian Journal of Botany 34, 197–205.
Growth rings, age and taxonomy of Dacrydium (Podocarpaceae) in Fiji.Crossref | GoogleScholarGoogle Scholar |

Baldwin BG, Sanderson MJ (1998) Age and rate of diversification of the Hawaiian silversword alliance (Compositae). Proceedings of the National Academy of Sciences, USA 95, 9402–9406.
Age and rate of diversification of the Hawaiian silversword alliance (Compositae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltlClsrw%3D&md5=bd81b45b790be153d781cafca56a2a8cCAS |

Baldwin BG, Wagner WL (2010) Hawaiian angiosperm radiations of North American origin. Annals of Botany 105, 849–879.
Hawaiian angiosperm radiations of North American origin.Crossref | GoogleScholarGoogle Scholar | 20382966PubMed |

Barluenga M, Stölting KN, Salzburger W, Muschick M, Meyer A (2006) Sympatric speciation in Nicaraguan crater lake cichlid fish. Nature 439, 719–723.
Sympatric speciation in Nicaraguan crater lake cichlid fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFyktrs%3D&md5=a2bee571f516b65362e54b42515a6bbcCAS | 16467837PubMed |

Biffin E, Hill RS, Lowe AJ (2010) Did kauri (Agathis: Araucariaceae) really survive the Oligocene drowning of New Zealand? Systematic Biology 59, 594–602.
Did kauri (Agathis: Araucariaceae) really survive the Oligocene drowning of New Zealand?Crossref | GoogleScholarGoogle Scholar | 20530131PubMed |

Bolnick DI, Fitzpatrick BM (2007) Sympatric speciation: models and empirical evidence. Annual Review of Ecology Evolution and Systematics 38, 459–487.
Sympatric speciation: models and empirical evidence.Crossref | GoogleScholarGoogle Scholar |

Brochmann C (1984) Hybridization and distribution of Argyranthemum coronopifolium (Asteraceae – Anthemideae) in the Canary Islands. Nordic Journal of Botany 4, 729–736.
Hybridization and distribution of Argyranthemum coronopifolium (Asteraceae – Anthemideae) in the Canary Islands.Crossref | GoogleScholarGoogle Scholar |

Brodribb TJ, Hill RS (1999) Southern conifers in time and space. Australian Journal of Botany 47, 639–696.
Southern conifers in time and space.Crossref | GoogleScholarGoogle Scholar |

Butlin RK, Galindo J, Grahame JW (2008) Sympatric, parapatric or allopatric: the most important way to classify speciation? Philosophical Transactions of the Royal Society, London, Series B 363, 2997–3007.

Conifer Specialist Group (1998) Dacrydium nausoriense. In ‘2007 IUCN red list of threatened species. Version 2010.2’. Available at http://www.iucnredlist.org [accessed on 8 July 2010].

Conifer Specialist Group (2000) Dacrydium guillauminii. In ‘2007 IUCN red list of threatened species. Version 2010.2’. Available at http://www.iucnredlist.org [accessed on 8 July 2010].

Conkle MT, Hodgskiss PD, Nunnally LB, Hunter SC (1982) ‘Starch gel electrophoresis of conifer seeds: a laboratory manual.’ (Pacific Southwest Forest and Range Experiment Station: Berkeley, CA)

Conran JG, Wood GM, Martin PG, Dowd JM, Quinn CJ, Gadek PA, Price RA (2000) Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Australian Journal of Botany 48, 715–724.
Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL.Crossref | GoogleScholarGoogle Scholar |

Coyne JA (1992) Genetics and speciation. Nature 355, 511–515.
Genetics and speciation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK387lvVSnsQ%3D%3D&md5=dd82f4bee76c99c9610be1d56f672befCAS | 1741030PubMed |

Crisp MD, Cook LG (2005) Do early branching lineages signify ancestral traits? Trends in Ecology & Evolution 20, 122–128.
Do early branching lineages signify ancestral traits?Crossref | GoogleScholarGoogle Scholar | 16701355PubMed |

de Kok R (2002) Are plant adaptations to growing on serpentine soils rare or common? A few case studies from New Caledonia. Adansonia 24, 229–238.

de Laubenfels DJ (1972) ‘Gymnospermes.’ (Muséum National d’Histoire Naturelle: Paris)

Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214
BEAST: Bayesian evolutionary analysis by sampling trees.Crossref | GoogleScholarGoogle Scholar | 17996036PubMed |

Filardi CE, Moyle RG (2005) Single origin of a pan-Pacific bird group and upstream colonization of Australasia. Nature 438, 216–219.
Single origin of a pan-Pacific bird group and upstream colonization of Australasia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtF2nsrjP&md5=92592f2a572cc9b5ec96a487a9e5165eCAS | 16281034PubMed |

Fitzpatrick BM, Fordyce JA, Gavrilets S (2008a) What, if anything, is sympatric speciation? Journal of Evolutionary Biology 21, 1452–1459.
What, if anything, is sympatric speciation?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cjltVShuw%3D%3D&md5=c637d84676e19b0d0293827d66a6eef7CAS | 18823452PubMed |

Fitzpatrick BM, Placyk JS, Niemiller ML, Casper GS, Burghardt GM (2008b) Distinctiveness in the face of gene flow: hybridization between specialist and generalist gartersnakes. Molecular Ecology 17, 4107–4117.
Distinctiveness in the face of gene flow: hybridization between specialist and generalist gartersnakes.Crossref | GoogleScholarGoogle Scholar | 18684137PubMed |

Gillespie RG (2002) Biogeography of spiders on remote oceanic islands of the Pacific: archipelagos as stepping stones? Journal of Biogeography 29, 655–662.
Biogeography of spiders on remote oceanic islands of the Pacific: archipelagos as stepping stones?Crossref | GoogleScholarGoogle Scholar |

Gow JL, Peichel CL, Taylor EB (2006) Contrasting hybridization rates between sympatric three-spined sticklebacks highlight the fragility of reproductive barriers between evolutionary young species. Molecular Ecology 15, 739–752.
Contrasting hybridization rates between sympatric three-spined sticklebacks highlight the fragility of reproductive barriers between evolutionary young species.Crossref | GoogleScholarGoogle Scholar | 16499699PubMed |

Grandcolas P, Murienne J, Robillard T, Desutter-Grandcolas L, Jourdan H, Guilbert E, Deharveng L (2008) New Caledonia: a very old Darwinian island? Philosophical Transactions of the Royal Society, B 363, 3309–3317.

Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In ‘Plant population genetics, breeding and genetic resources’. (Eds AHD Brown, MT Clegg, AL Kahler, BS Weir) pp. 43–63. (Sinauer Associates: Sunderland, MA)

Hill RS (2001) Biogeography, evolution and palaeoecology of Nothofagus (Nothofagaceae): the contribution of the fossil record. Australian Journal of Botany 49, 321–332.
Biogeography, evolution and palaeoecology of Nothofagus (Nothofagaceae): the contribution of the fossil record.Crossref | GoogleScholarGoogle Scholar |

Hill RS, Christophel DC (2001) Two new species of Dacrydium (Podocarpaceae) based on vegetative fossils from Middle Eocene sediments at Nelly Creek, South Australia. Australian Systematic Botany 14, 193–205.
Two new species of Dacrydium (Podocarpaceae) based on vegetative fossils from Middle Eocene sediments at Nelly Creek, South Australia.Crossref | GoogleScholarGoogle Scholar |

Howarth DG, Baum DA (2005) Genealogical evidence of homoploid hybrid speciation in an adaptive radiation of Scaevola (Goodeniaceae) in the Hawaiian Islands. Evolution 59, 948–961.

Jaffré T (1995) Distribution and ecology of conifer in New Caledonia. In ‘Ecology of southern conifers’. (Eds NJ Enright, RS Hill) pp. 171–196. (Melbourne University Press: Melbourne)

Jaffré T, Bouchet P, Veillon J-M (1998) Threatened plants of New Caledonia: is the system of protected areas adequate? Biodiversity and Conservation 7, 109–135.
Threatened plants of New Caledonia: is the system of protected areas adequate?Crossref | GoogleScholarGoogle Scholar |

Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends in Ecology & Evolution 17, 230–241.
Inbreeding effects in wild populations.Crossref | GoogleScholarGoogle Scholar |

Keppel G, Lee S-W, Hodgskiss PD (2002) Evidence for long isolation among populations of a Pacific cycad: genetic diversity and differentiation in Cycas seemannii A.Br. (Cycadaceae). The Journal of Heredity 93, 133–139.
Evidence for long isolation among populations of a Pacific cycad: genetic diversity and differentiation in Cycas seemannii A.Br. (Cycadaceae).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38vgslKjtg%3D%3D&md5=1c65ed541b838ee122978ca67c0a3370CAS | 12140274PubMed |

Keppel G, Rounds IA, Thomas NT (2006) The flora, vegetation, and conservation value of mesic forest at Dogotuki, Vanua Levu, Fiji Islands. New Zealand Journal of Botany 44, 273–292.
The flora, vegetation, and conservation value of mesic forest at Dogotuki, Vanua Levu, Fiji Islands.Crossref | GoogleScholarGoogle Scholar |

Keppel G, Hodgskiss PD, Plunkett GM (2008) Cycads in the insular Southwest Pacific: dispersal or vicariance? Journal of Biogeography 35, 1004–1015.
Cycads in the insular Southwest Pacific: dispersal or vicariance?Crossref | GoogleScholarGoogle Scholar |

Keppel G, Lowe AJ, Possingham HP (2009) Changing perspectives on the biogeography of the tropical South Pacific: influences of dispersal, vicariance and extinction. Journal of Biogeography 36, 1035–1054.
Changing perspectives on the biogeography of the tropical South Pacific: influences of dispersal, vicariance and extinction.Crossref | GoogleScholarGoogle Scholar |

Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49, 725–738.

Knapp M, Mudaliar R, Havell D, Wagstaff SJ, Lockhart PJ (2007) The drowning of New Zealand and the problem of Agathis. Systematic Biology 56, 862–870.
The drowning of New Zealand and the problem of Agathis.Crossref | GoogleScholarGoogle Scholar | 17957581PubMed |

Knopf P, Nimsch H, Stützel T (2007) Dacrydium × suprinii, sp. nova – a natural hybrid of Dacrydium araucarioides × D. guillauminii. Feddes Repertorium 118, 51–59.
Dacrydium × suprinii, sp. nova – a natural hybrid of Dacrydium araucarioides × D. guillauminii.Crossref | GoogleScholarGoogle Scholar |

Levin DA, Francisco-Ortega J, Jansen RK (1996) Hybridization and the extinction of rare plant species. Conservation Biology 10, 10–16.
Hybridization and the extinction of rare plant species.Crossref | GoogleScholarGoogle Scholar |

Lowry PP II (1998) Diversity, endemism, and extinction in the flora of New Caledonia: a review. In ‘Rare, threatened, and endangered floras of Asia and the Pacific Rim’. (Eds C-I Peng, PP Lowry II) pp. 181–206. (Academia Sinica: Taipei, Taiwan)

Mallet J (2007) Hybrid speciation. Nature 446, 279–283.
Hybrid speciation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXivVSnsL0%3D&md5=c25613d693f11aa043c5840091da019dCAS | 17361174PubMed |

Matisoo-Smith E, Robins JH (2004) Origins and dispersal of Pacific peoples: evidence from mtDNA phylogenies of the Pacific rat. Proceedings of the National Academy of Sciences, USA 101, 9167–9172.
Origins and dispersal of Pacific peoples: evidence from mtDNA phylogenies of the Pacific rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltlWqtrY%3D&md5=ec8260ef935c6f86e20c1923e4af21f2CAS |

Miller M (1998) ‘Tools for population genetic analyses (TFPGA), version 1.3. A Windows program for the analysis of allozyme and molecular population genetic data.’ Available at http://herb.bio.nau.edu/~miller/tfpga.htm [accessed on 24 April 2009].

Murienne J, Pellens R, Budinoff RB, Wheeler WC, Grandcolas P (2008) Phylogenetic analysis of the endemic New Caledonian cockroach Lauraesilpha. Testing competing hypotheses of diversification. Cladistics 24, 802–812.
Phylogenetic analysis of the endemic New Caledonian cockroach Lauraesilpha. Testing competing hypotheses of diversification.Crossref | GoogleScholarGoogle Scholar |

Murphy RW, Sites JW Jr, Buth DG, Haufler CH (1996) Proteins: isozyme electrophoresis. In ‘Molecular systematics’. (Eds DM Hillis, C Moritz, BK Mabel) pp. 51–120. (Sinauer Associates: Sunderland, MA)

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403, 853–858.
Biodiversity hotspots for conservation priorities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhs1Olsr4%3D&md5=68eea4471f3df3eee26bbe838e22b4c1CAS | 10706275PubMed |

Nei M (1973) Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, USA 70, 3321–3323.
Analysis of gene diversity in subdivided populations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2c%2FlsFCrtQ%3D%3D&md5=022ba998f8b5f130de6630161e97488bCAS |

Nei M (1978) Estimation of average heterozygosity and genetic distance from small number of individuals. Genetics 89, 583–590.

Nosil P (2008) Speciation with gene flow could be common. Molecular Ecology 17, 2103–2106.
Speciation with gene flow could be common.Crossref | GoogleScholarGoogle Scholar | 18410295PubMed |

Oldfield S, Lusty C, Mackinven A (1998) ‘The world list of threatened trees.’ (World Conservation Press: Cambridge, UK)

Pavlacky DC, Goldizen AW, Prentis PJ, Nicholls JA (2009) A landscape genetics approach for quantifying the relative influence of historic and contemporary habitat heterogeneity on the genetic connectivity of a rainforest bird. Molecular Ecology 18, 2945–2960.
A landscape genetics approach for quantifying the relative influence of historic and contemporary habitat heterogeneity on the genetic connectivity of a rainforest bird.Crossref | GoogleScholarGoogle Scholar | 19549110PubMed |

Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288–295.
GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research.Crossref | GoogleScholarGoogle Scholar |

Pillon Y, Munzinger J, Amir H, Hopkins HCF, Chase MW (2009) Reticulate evolution on a mosaic of soils: diversification of the New Caledonian endemic genus Codia (Cunoniaceae). Molecular Ecology 18, 2263–2275.
Reticulate evolution on a mosaic of soils: diversification of the New Caledonian endemic genus Codia (Cunoniaceae).Crossref | GoogleScholarGoogle Scholar | 19389179PubMed |

Pintaud JC, Jaffre T, Puig H (2001) Chorology of New Caledonian palms and possible evidence of Pleistocene rain forest refugia. Comptes Rendus de l’Académie des Sciences. Série III, Sciences de la Vie 324, 453–463.
Chorology of New Caledonian palms and possible evidence of Pleistocene rain forest refugia.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MzkvVGqsg%3D%3D&md5=5128a8750ee8cdc658dc3b7a342ecd09CAS | 11411288PubMed |

Pole M (1992) Early Miocene flora of the Manuhenkia Group, New Zealand. 2. Conifers. Journal of the Royal Society of New Zealand 22, 287–302.

Pole M (1997) Miocene conifers from the Manuherikia Group, New Zealand. Journal of the Royal Society of New Zealand 27, 355–370.
Miocene conifers from the Manuherikia Group, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Prentis PJ, White EM, Radford IJ, Lowe AJ, Clarke AR (2007) Can hybridization cause local extinction: a case for demographic swamping of the Australian native Senecio pinntifolius by the invasive Senecio madagascariensis? New Phytologist 176, 902–912.
Can hybridization cause local extinction: a case for demographic swamping of the Australian native Senecio pinntifolius by the invasive Senecio madagascariensis? Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2snmvFajuw%3D%3D&md5=bec8169aed2f4f6155fda6790268b4afCAS | 17850249PubMed |

Prentis PJ, Wilson JRU, Dormontt EE, Richardson DM, Lowe AJ (2008) Adaptive evolution in invasive species. Trends in Ecology & Evolution 13, 288–294.

Quinn CJ (1982) Taxonomy of Dacrydium Sol. ex Lamb. emend. de Laub. (Podocarpaceae). Australian Journal of Botany 30, 311–320.
Taxonomy of Dacrydium Sol. ex Lamb. emend. de Laub. (Podocarpaceae).Crossref | GoogleScholarGoogle Scholar |

Rambaut A, Drummond AJ (2007) ‘Tracer v1.4.’ Available at http://beast.bio.ed.ac.uk [accessed on 24 April 2009].

Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conservation Biology 17, 230–237.
Correlation between fitness and genetic diversity.Crossref | GoogleScholarGoogle Scholar |

Renner SS (2005) Relaxed molecular clocks for dating historical plant dispersal events. Trends in Plant Science 10, 550–558.
Relaxed molecular clocks for dating historical plant dispersal events.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFOmtL3M&md5=a35342672fe441d28dd5d278ee7856aaCAS | 16226053PubMed |

Rieseberg LH, Gerber D (1995) Hybridization in the Catalina Island mountain mahogany (Cercocarpus traskiae): RAPD evidence. Conservation Biology 9, 199–203.
Hybridization in the Catalina Island mountain mahogany (Cercocarpus traskiae): RAPD evidence.Crossref | GoogleScholarGoogle Scholar |

Rieseberg LH, Wendel JH (1993) Introgression and its consequences in plants. In ‘Hybrid zones and the evolutionary process’. (Ed. RG Harrison) pp. 70–109. (Oxford University Press: New York)

Rieseberg LH, Willis JH (2007) Plant speciation. Science 317, 910–914.
Plant speciation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptVaisrs%3D&md5=ec8de5546182278d4371fa66deee3b81CAS | 17702935PubMed |

Rieseberg LH Widmer A Arntz M Burke JM 2002 Directional selection is the primary cause of phenotypic diversification. Proceedings of the National Academy of Natural Sciences, USA 99 12 242 12 245

Rundle HD, Nagel L, Bougham JW, Schluter D (2000) Natural selection and parallel speciation in sympatric sticklebacks. Science 287, 306–308.
Natural selection and parallel speciation in sympatric sticklebacks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvVWqug%3D%3D&md5=0f50ced2ff0c0e679f6269fef1f719f7CAS | 10634785PubMed |

Sanders KL, Lee MSY (2007) Evaluating molecular clock calibrations using Bayesian analysis with soft and hard bounds. Biology Letters 3, 275–279.
Evaluating molecular clock calibrations using Bayesian analysis with soft and hard bounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnt1Glu7g%3D&md5=6d1365917baf38bb731085f705db5af2CAS | 17363358PubMed |

Sanmartín I, Wanntorp L, Winkworth RC (2007) West wind drift revisited: testing for directional dispersal in the southern hemisphere using event-based tree fitting. Journal of Biogeography 34, 398–416.
West wind drift revisited: testing for directional dispersal in the southern hemisphere using event-based tree fitting.Crossref | GoogleScholarGoogle Scholar |

Savolainen V, Anstett M-C, Lexer C, Hutton I, Clarkson JJ, Norup MV, Powell MP, Springate D, Salamin N, Baker WJ (2006) Sympatric speciation in palms on an oceanic island. Nature 441, 210–213.
Sympatric speciation in palms on an oceanic island.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVGnsrs%3D&md5=3b7357e8ce356135c475353540f25522CAS | 16467788PubMed |

Seehausen O (2006) Conservation: loosing biodiversity by reverse speciation. Current Biology 16, R334–R337.
Conservation: loosing biodiversity by reverse speciation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFals70%3D&md5=62c68db08b3956897ea99401e6514d69CAS | 16682344PubMed |

Seehausen O, van Alphen JJM (1999) Can sympatric speciation by disruptive sexual selection explain rapid evolution of cichlid diversity in Lake Victoria? Ecology Letters 2, 262–271.
Can sympatric speciation by disruptive sexual selection explain rapid evolution of cichlid diversity in Lake Victoria?Crossref | GoogleScholarGoogle Scholar |

Seehausen O, Takimoto G, Roy DN, Jokela J (2008) Speciation reversal and biodiversity dynamics with hybridization in changing environments. Molecular Ecology 17, 30–44.
Speciation reversal and biodiversity dynamics with hybridization in changing environments.Crossref | GoogleScholarGoogle Scholar | 18034800PubMed |

Setoguchi H, Osawa TA, Pintaud J-C, Jaffré T, Veillon J-M (1998) Phylogenetic relationships within Araucariaceae based on rbcL gene sequences. American Journal of Botany 85, 1507–1516.
Phylogenetic relationships within Araucariaceae based on rbcL gene sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvVSr&md5=8cd6429358590d97c2abce4085303cebCAS |

Sinclair WT, Mill RR, Gardner MF, Woltz P, Jaffré T, Preston J, Hollingsworth PM, Ponge A, Möller M (2002) Evolutionary relationships of the New Caledonian heterotrophic conifer, Parasitaxus usta (Podocarpaceae), inferred from chloroplast trnL-F intron/spacer and nuclear rDNA ITS2 sequences. Plant Systematics and Evolution 233, 79–104.
Evolutionary relationships of the New Caledonian heterotrophic conifer, Parasitaxus usta (Podocarpaceae), inferred from chloroplast trnL-F intron/spacer and nuclear rDNA ITS2 sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xns1eit7k%3D&md5=f81511deabc57bc450fc360a6f15f225CAS |

Smith AC (1979) ‘Flora Vitiensis nova: a new flora of Fiji (spermatophytes only).’ (Pacific Tropical Botanical Garden: Lawai, Hawai’i)

Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proceedings of the National Academy of Natural Sciences, USA 101, 15 261–15 264.

Swofford DL (2002) ‘PAUP*: phylogenetic analysis using parsimony (*and other methods): version 4.’ (Sinauer Associates: Sunderland, MA)

Swofford DL, Olsen GJ, Waddell PJ, Hillis DM (1996) Phylogenetic inference. In ‘Molecular systematics’. 2nd edn. (Eds DM Hillis, C Moritz, B Mable) pp. 407–514. (Sinauer Associates, Sunderland, MA)

Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17, 1105–1109.
Universal primers for amplification of three non-coding regions of chloroplast DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xhslel&md5=881be45efb56742ff78711a8a4bdb4cfCAS | 1932684PubMed |

Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673–4680.
CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitlSgu74%3D&md5=c563009a662533153315f260430154f5CAS | 7984417PubMed |

Vähä JP, Primmer CR (2006) Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Molecular Ecology 15, 63–72.
Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci.Crossref | GoogleScholarGoogle Scholar | 16367830PubMed |

Whitney KD, Randell RA, Rieseberg LH (2006) Adaptive introgression of herbivore resistance traits in the weedy sunflower Helianthus annus. American Naturalist 167, 794–807.
Adaptive introgression of herbivore resistance traits in the weedy sunflower Helianthus annus.Crossref | GoogleScholarGoogle Scholar |

Willyard A, Syring J, Gernandt DS, Liston A, Cronn R (2007) Fossil calibration of molecular divergence infers moderate mutation rate and recent radiations for Pinus. Molecular Biology and Evolution 24, 90–101.
Fossil calibration of molecular divergence infers moderate mutation rate and recent radiations for Pinus.Crossref | GoogleScholarGoogle Scholar | 16997907PubMed |

Wolf DE, Takebayashi N, Rieseberg LH (2001) Predicting the risk of extinction through hybridization. Conservation Biology 15, 1039–1053.
Predicting the risk of extinction through hybridization.Crossref | GoogleScholarGoogle Scholar |

Wright S (1951) The genetical structure of populations. Annals of Eugenics 15, 323–354.

Wright SD, Yong CG, Dawson JW, Whittaker DJ, Gardner RC (2000) Riding the ice age El Niño? Pacific biogeography and evolution of Metrosideros subg. Metrosideros (Myrtaceae) inferred from nuclear ribosomal DNA. Proceedings of the National Academy of Sciences, USA 97, 4118–4123.
Riding the ice age El Niño? Pacific biogeography and evolution of Metrosideros subg. Metrosideros (Myrtaceae) inferred from nuclear ribosomal DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXislSgtbg%3D&md5=4462fc3bfb73681c37fdcae65fb7cba3CAS |

Yan CY, Kroenke LW (1993) A plate tectonic reconstruction of the Southwest Pacific, 0–100 Ma. Proceedings of the Ocean Drilling Program. Scientific Results 130, 697–709.

Yeh FC, Yang R-C, Boyle TJB, Ye Z-H, Mao JX (1997) ‘POPGENE, the user friendly shareware for population genetic analysis.’ (University of Alberta: Alberta, Canada)