Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Cytological analysis of hybrid embryos of intergeneric crosses between Salix viminalis and Populus species

Agnieszka Bagniewska-Zadworna A C , Maria K. Wojciechowicz A , Maciej Zenkteler A , Stanisław Jeżowski B and Elżbieta Zenkteler A
+ Author Affiliations
- Author Affiliations

A Department of General Botany, Institute of Experimental Biology, Faculty of Biology, A. Mickiewicz University, 61-614 Poznań, Umultowska 89, Poland.

B Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.

C Corresponding author. Email: agabag@amu.edu.pl

Australian Journal of Botany 58(1) 42-48 https://doi.org/10.1071/BT09188
Submitted: 23 October 2009  Accepted: 22 December 2009   Published: 11 March 2010

Abstract

Intergeneric hybridisation between Salix viminalis L. as the female and four Populus species (Populus trichocarpa, P. tremula, P. × canadensis and P. simonii) as male pollen donors was performed by in vitro stigma pollination. To overcome postzygotic barriers, transfer of hybrid embryos to new medium is necessary. We carried out detailed ultrastructural analyses to establish: (i) at which stage of embryo development the first signs of programmed cell death (PCD) could be detected; and (ii) at which stage the lack of serious or irreversible changes guaranteed that advanced development of hybrid plants could occur after embryo rescue. Transmission electron microscopy and confocal laser scanning microscopy revealed the presence of both developing and degenerating embryos. Developing globular, heart-shaped, and early cotyledonary embryos contained cells of correct ultrastructure. The only sign of intergeneric hybridisation was a delay in development for a few days, in comparison with control embryos. The earliest indicators of embryo degeneration were noted at 9 days after pollination (DAP). The most common indicators were excessive embryo vacuolisation, which was characterised by a large number of vesicles and formation of small vacuoles, as well as enlarged central vacuoles. Extended plastid thylakoids, folding of the cell wall, and autophagosomes were observed. Our detailed investigation of PCD in hybrid embryos enabled us to conclude that the embryo rescue technique was most effective in intergeneric willow × poplar crosses if applied between 9 and 16 DAP.


Acknowledgement

This work was supported by grant no. R 12 061 03 from the Polish Ministry of Science and Higher Education.


References


Argus GW (1974) Experimental study of hybridization and pollination in Salix (willow). Canadian Journal of Botany-Revue Canadienne De Botanique 52, 1613–1619.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bagniewska-Zadworna A (2008) The root microtubule cytoskeleton and cell cycle analysis through desiccation of Brassica napus seedlings. Protoplasma 233, 177–185.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Buitendijk JH, Pinsonneaux N, Vandonk AC, Ramanna MS, VanLammeren AAM (1995) Embryo rescue by half-ovule culture for the production of interspecific hybrids in Alstroemeria. Scientia Horticulturae 64, 65–75.
Crossref | GoogleScholarGoogle Scholar | open url image1

Chi HS (2000) Interspecific crosses of lily by in vitro pollinated ovules. Botanical Bulletin of Academia Sinica 41, 143–149. open url image1

Dowrick GJ, Brandram SN (1970) Abnormalities of endosperm development in Lilium Hybrids. Euphytica 19, 433–442.
Crossref | GoogleScholarGoogle Scholar | open url image1

Esau K, Gill RH (1991) Distribution of vacuoles and some other organelles in dividing cells. Botanical Gazette (Chicago, Ill.) 152, 397–407.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fischer R, Timberlake WE (1995) Aspergillus nidulans Apsa (Anucleate primary sterigmata) encodes a coiled-coil protein required for nuclear positioning and completion of asexual development. The Journal of Cell Biology 128, 485–498.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Fratini R, Ruiz ML (2006) Interspecific hybridization in the genus Lens applying in vitro embryo rescue. Euphytica 150, 271–280.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fu XL, Lu YG, Liu XD, Li JQ, Feng JH (2007) Cytological mechanisms of interspecific incrossability and hybrid sterility between Oryza sativa L. and O. alta Swallen. Chinese Science Bulletin 52, 755–765.
Crossref | GoogleScholarGoogle Scholar | open url image1

Guan LM, Adachi T (1992) Reproductive deterioration in buckwheat (Fagopyrum esculentum) under summer conditions. Plant Breeding 109, 304–312.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ishizaka H (2008) Interspecific hybridization by embryo rescue in the genus Cyclamen. Plant Biotechnology (Sheffield, England) 25, 511–519. open url image1

Kantartzi S, Roupakias DG (2008) Breeding barriers between Gossypium spp. and species of the Malvaceae family. Australian Journal of Botany 56, 241–245.
Crossref | GoogleScholarGoogle Scholar | open url image1

Klionsky DJ, Emr SD (2000) Cell biology - autophagy as a regulated pathway of cellular degradation. Science 290, 1717–1721.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kobori S, Marubashi W (2004) Programmed cell death detected in interpsecific hybrids of Nicotiana repanda × N. tomentosiformis expressing hybrid lethality. Breeding Science 54, 347–350.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lindegaard K, Barker J (1997) Breeding willows for biomass. Aspects of Applied Biology 49, 155–162. open url image1

Murashige T, Skoog F (1962) A revised medium for rapid growth and Biol. Assays with tobacco tissue cultures. Physiologia Plantarum 15, 473–497.
Crossref | GoogleScholarGoogle Scholar | open url image1

Nakamura T, Kuwayama S, Tanaka S, Oomiya T, Saito H, Nakano M (2005) Production of intergeneric hybrid plants between Sandersonia aurantiaca and Gloriosa rothschildiana via ovule culture (Colchicaceae). Euphytica 142, 283–289.
Crossref | GoogleScholarGoogle Scholar | open url image1

Obara K, Kuriyama H, Fukuda H (2001) Direct evidence of active and rapid nuclear degradation triggered by vacuole rupture during programmed cell death in Zinnia. Plant Physiology 125, 615–626.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Reynolds ES (1963) Use of lead citrate at high pH as an electron-opaque stain in electron microscopy. The Journal of Cell Biology 17, 208–212.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rogers HJ (2006) Programmed cell death in floral organs: How and why do flowers die? Annals of Botany 97, 309–315.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ronnberg-Wastljung AC, Gullberg U (1999) Genetics of breeding characters with possible effects on biomass production in Salix viminalis (L.). Theoretical and Applied Genetics 98, 531–540.
Crossref | GoogleScholarGoogle Scholar | open url image1

Shaikh NY, Guan LM, Adachi T (2002) Ultrastructural aspects on degeneration of embryo, endosperm and suspensor cells following interspecific crosses in the genus Fagopyrum. Breeding Science 52, 171–176.
Crossref | GoogleScholarGoogle Scholar | open url image1

Smulders MJM, Beringen R, Volosyanchuk R, Broeck AV, van der Schoot J, Arens P, Vosman B (2008) Natural hybridisation between Populus nigra L. and P. × canadensis Moench. Hybrid offspring competes for niches along the Rhine river in the Netherlands. Tree Genetics & Genomes 4, 663–675.
Crossref | GoogleScholarGoogle Scholar | open url image1

Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructure Research 26, 31–43.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Stettler RF, Koster R, Steenackers V (1980) Interspecific crossability studies in Poplars. Theoretical and Applied Genetics 58, 273–282.
Crossref | GoogleScholarGoogle Scholar | open url image1

Van Doorn WG, Woltering EJ (2005) Many ways to exit? Cell death categories in plants. Trends in Plant Science 10, 117–122.
Crossref | PubMed |
open url image1

Van Laere K, Van Huylenbroeck JM, Van Bockstaele E (2007) Interspecific hybridisation between Hibiscus syriacus, Hibiscus sinosyriacus and Hibiscus paramutabilis. Euphytica 155, 271–283.
Crossref | GoogleScholarGoogle Scholar | open url image1

Vitha S , Baluska F , Jasik J , Volkmann D , Barlow PW (2000) Steedman’s wax for F-actin visualization. In ‘Actin: A Dynamic Framework for Multiple Plant Cell Functions’. (Eds CJ Staiger, F Baluska, D Volkmann, PW Barlow) pp. 619–636. (Kluwer Academic: Dordrecht)

Wang J, Huang L, Bao MZ, Liu GF (2009) Production of interspecific hybrids between Lilium longiflorum and L. lophophorum var. linearifolium via ovule culture at early stage. Euphytica 167, 45–55.
Crossref | GoogleScholarGoogle Scholar | open url image1

Willing RR, Pryor LD (1976) Interspecific hybridization in Poplar. Theoretical and Applied Genetics 47, 141–151.
Crossref | GoogleScholarGoogle Scholar | open url image1

Woo SH, Tsai QS, Adachi T (1995) Possibility of interspecific hybridization by embryo rescue in the genus Fagopyrum. Current Advances in Buckwheat Research 6, 225–237. open url image1

Zenkteler M (1990) In vitro fertilization and wide hybridization in higher plants. Critical Reviews in Plant Sciences 9, 267–279.
Crossref | GoogleScholarGoogle Scholar | open url image1

Zenkteler M, Wojciechowicz M, Bagniewska-Zadworna A, Jezowski S (2003) Preliminary results on studies of in vivo and in vitro sexual reproduction of Salix viminalis L. Dendrobiology 50, 37–42. open url image1

Zenkteler M, Wojciechowicz M, Bagniewska-Zadworna A, Zenkteler E, Jezowski S (2005) Intergeneric crossability studies on obtaining hybrids between Salix viminalis and four Populus species – In vivo and in vitro pollination of pistils and the formation of embryos and plantlets. Trees-Structure and Function 19, 638–643. open url image1

Zsuffa L (1990) Genetic improvement of willows for energy plantations. Biomass 22, 35–47.
Crossref | GoogleScholarGoogle Scholar | open url image1