Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Identification of chromosomal deficiency by flow cytometry and cytogenetics in mutant tomato (Solanum lycopersicum, Solanaceae) plants

Isane Vera Karsburg A , Carlos Roberto Carvalho B C and Wellington Ronildo Clarindo B
+ Author Affiliations
- Author Affiliations

A Departamento de Biologia, Universidade do Estado de Mato Grosso, UNEMAT, Campus de Alta Floresta, Rod. MT 208, Km 147 – CEP: 78580-000, Alta Floresta, MT, Brazil.

B Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil.

C Corresponding author. Email: ccarvalh@ufv.br

Australian Journal of Botany 57(5) 444-449 https://doi.org/10.1071/BT08223
Submitted: 20 December 2008  Accepted: 16 June 2009   Published: 14 September 2009

Abstract

Structural chromosomal aberrations can occur spontaneously in plant karyotypes as a result of both intrinsic and extrinsic factors. These aberrations may affect sporophyte fitness because fundamental genes involved with distinct morphogenic process may be lost. Inadequate development of flowers and anomalous fruits without seeds has been observed in plants of Solanum lycopersicum L. (Solanaceae) ‘BHG 160’ of the tomato germplasm bank (Universidade Federal de Viçosa, Brazil). The nuclear DNA content, quantified by flow cytometry, showed that mutant ‘BHG 160’ possesses 0.09 pg (4.59%) less nuclear DNA content than does the wild-type ‘BGH 160’. Improved cytogenetical preparations evidenced that this difference was due to a spontaneous terminal deficiency in the short arm of the mutant ‘BGH 160’ Chromosome 1. These results suggest that the genes encoded in the short arm of Chromosome 1 may be involved in the development of flowers and fruits in the tomato.


Acknowledgements

We thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil) and FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais) for providing the financial support for this work, and Dr Derly José Henriques da Silva (Department of Agronomy) and Dr Jaroslav Doležel (Experimental Institute of Botany, Czech Republic) for supplying seeds of S. lycopersicum ‘BGH 160’ and S. lycopersicum ‘Stupické’, respectively.


References


Abreu IS, Carvalho CR, Clarindo WR (2008) Chromosomal DNA content of sweet pepper determined by association of cytogenetic and cytometric tools. Plant Cell Reports 27, 1227–1233.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Alvarez E (1997) The strategy goes detecting chromosome-specific rearrangements in rye. Genome 40, 451–457.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Banks P (1984) A new diploid chromosome number for tomato (Lycopersicon esculentum). Canadian Journal of Genetics and Cytology 26, 636–639. open url image1

Barg R, Sobolev I, Eilon T, Gur A, Chmelnitsky I, Shabtai S, Grotewold E, Salts Y (2005) The tomato early fruit specific gene Lefsm1 defines a novel class of plant-specific SANT/MYB domain proteins. Planta 221, 197–211.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Carvalho CR, Clarindo WR, Almeida PM (2007) Plant cytogenetics: still looking for the perfect mitotic chromosomes. Nucleus 50, 453–462. open url image1

Carvalho CR, Clarindo WR, Praça MM, Araújo FS, Carels N (2008) Genome size, base composition and karyotype of Jatropha curcas L., an important biofuel plant. Plant Science 174, 613–617.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Clarindo WR, Carvalho CR (2006) A high quality chromosome preparation from cell suspension aggregates culture of Coffea canephora. Cytologia 71, 243–249.
Crossref | GoogleScholarGoogle Scholar | open url image1

Clarindo WR, Carvalho CR (2008) First Coffea arabica karyogram showing that this species is a true allotetraploid. Plant Systematics and Evolution 274, 237–241.
Crossref | GoogleScholarGoogle Scholar | open url image1

Clarindo WR, Carvalho CR (2009) Comparison of the Coffea canephora and C. arabica karyotype based on chromosomal DNA content. Plant Cell Reports 28, 73–81.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Clarindo WR, Carvalho CR, Alves BMG (2007) Mitotic evidence for the tetraploid nature of Glycine max provided by high quality karyograms. Plant Systematics and Evolution 265, 101–107.
Crossref | GoogleScholarGoogle Scholar | open url image1

Coppoolse ER, de Vroomen MJ, van Gennip F, Hersmus BJ, van Haaren MJ (2005) Size does matter: pre-mediated somatic deletion efficiency depends on the distance between the target lox-sites. Plant Molecular Biology 58, 687–698.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Doležel J, Göhde W (1995) Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry. Cytometry 19, 103–106.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Doležel J, Sgorbati S, Lucretti S (1992) Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiologia Plantarum 85, 625–631.
Crossref | GoogleScholarGoogle Scholar | open url image1

Freitas DV, Carvalho CR, Filho FJN, Astolfi-Filho S (2007) Karyotype with 210 chromosomes in guaraná (Paullinia cupana ‘Sorbilis’). Journal of Plant Research 120, 399–404.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220, 1049–1051.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Gregory RT (2004) Insertion-deletion biases and the evolution of genome size. Gene 324, 15–34.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Guerra MS (1986) Reviewing the chromosome nomenclature of Levan et al. Revista Brasileira de Genetica 9, 741–743. open url image1

Hoagland DR , Arnon DI (1938) The water-culture method for growing plants without soil. California Agricultural Experimental Station. Circ. n.347. (Agricultural Experimental Station: Davis, CA)

Janssen B, Williams A, Chen J, Mathern J, Hake S, Sinha N (1998) Isolation and characterization of two knotted-like homeobox genes from tomato. Plant Molecular Biology 36, 417–425.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Kato K, Ohta K, Komata Y, Araki T, Kanahama K, Kanayama Y (2005) Morphological and molecular analyses of the tomato floral mutant leafy inflorescence, a new allele of falsiflora. Plant Science 169, 131–138.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Kerr EA (1982) Single flower truss ‘stf’ appears to be on chromosome 3. Tomato Genetics Cooperative 32, 31–40. open url image1

Khush GS, Rick CM (1963) Meiosis of hybrids between Lycopersicon esculentum and Solanum pennellii. Genetica 33, 167–183.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lapitan NLV, Ganal MW, Tanksley SD (1989) Somatic chromosome karyotype of tomato based on in situ hybridization of the TGRI satellite repeat. Genome 32, 992–998. open url image1

Levan A, Fredga A, Sanderberg AA (1964) Nomenclature for centromeric position in chromosome. Hereditas 52, 201–220.
Crossref |
open url image1

Liharska TB, Hontelez J, van Kammen A, Zabel P, Koornneef M (1997) Molecular mapping around the centromere of tomato chromosome 6 using irradiation-induced deletions. Theoretical and Applied Genetics 95, 969–974.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Loureiro J, Rodriguez E, Doležel J, Santos C (2006) Comparison of four nuclear isolation buffers for plant DNA flow cytometry. Annals of Botany 98, 679–689.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Mao L, Begum D, Chuang H, Budiman MA, Szymkowiak EJ, Irish EE, Wing RA (2000) JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development. Nature 406, 910–913.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Otto FJ (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In ‘Methods in cell biology, vol. 33’. (Eds Z Darzynkiewiez, HA Crissman, JP Robinson) pp. 105–110. (Academic Press: San Diego, CA)

Poggio L, Hunziker JH (1986) Nuclear DNA content variation in Bulnesia. Journal of Heredity 77, 43–48. open url image1

Rosado TB, Clarindo WR, Carvalho CR (2009) An integrated cytogenetic, flow and image cytometry procedure used to measure the DNA content of Zea mays A and B chromosomes. Plant Science 176, 154–158.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Samach A, Lotan H (2007) The transition to flowering in tomato. Plant Biotechnology 24, 71–82. open url image1

Schubert I (2007) Chromosome evolution. Current Opinion in Plant Biology 10, 109–115.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Schubert I, Pecinka A, Meister A, Schubert V, Klatte M, Jovtchev G (2004) DNA damage processing and aberration formation in plants. Cytogenetic and Genome Research 104, 104–108.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Sherman JD, Stack SM (1992) Two-dimensional spreads of synaptonemal complexes from solanaceous plants. V. Tomato (Lycopersicon esculentum) karyotype and idiogram. Genome 35, 354–359. open url image1

Singh RJ (1993) The handling of plant chromosomes. In ‘Plant cytogenetics’. (Ed. RJ Singh) pp. 7–24. (CRC Press: Boca Raton, FL)

Siroky J, Zluvova J, Riha K, Shippen DE, Vyskot B (2003) Rearrangements of ribosomal DNA clusters in late generation telomerase-deficient Arabidopsis. Chromosoma 112, 116–123.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Sybenga J (1992) ‘Cytogenetics in plant breeding.’ Monographs on theoretical and applied genetics 17. (Springer-Verlag: Berlin)