Identification of chromosomal deficiency by flow cytometry and cytogenetics in mutant tomato (Solanum lycopersicum, Solanaceae) plants
Isane Vera Karsburg A , Carlos Roberto Carvalho B C and Wellington Ronildo Clarindo BA Departamento de Biologia, Universidade do Estado de Mato Grosso, UNEMAT, Campus de Alta Floresta, Rod. MT 208, Km 147 – CEP: 78580-000, Alta Floresta, MT, Brazil.
B Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil.
C Corresponding author. Email: ccarvalh@ufv.br
Australian Journal of Botany 57(5) 444-449 https://doi.org/10.1071/BT08223
Submitted: 20 December 2008 Accepted: 16 June 2009 Published: 14 September 2009
Abstract
Structural chromosomal aberrations can occur spontaneously in plant karyotypes as a result of both intrinsic and extrinsic factors. These aberrations may affect sporophyte fitness because fundamental genes involved with distinct morphogenic process may be lost. Inadequate development of flowers and anomalous fruits without seeds has been observed in plants of Solanum lycopersicum L. (Solanaceae) ‘BHG 160’ of the tomato germplasm bank (Universidade Federal de Viçosa, Brazil). The nuclear DNA content, quantified by flow cytometry, showed that mutant ‘BHG 160’ possesses 0.09 pg (4.59%) less nuclear DNA content than does the wild-type ‘BGH 160’. Improved cytogenetical preparations evidenced that this difference was due to a spontaneous terminal deficiency in the short arm of the mutant ‘BGH 160’ Chromosome 1. These results suggest that the genes encoded in the short arm of Chromosome 1 may be involved in the development of flowers and fruits in the tomato.
Acknowledgements
We thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil) and FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais) for providing the financial support for this work, and Dr Derly José Henriques da Silva (Department of Agronomy) and Dr Jaroslav Doležel (Experimental Institute of Botany, Czech Republic) for supplying seeds of S. lycopersicum ‘BGH 160’ and S. lycopersicum ‘Stupické’, respectively.
Abreu IS,
Carvalho CR, Clarindo WR
(2008) Chromosomal DNA content of sweet pepper determined by association of cytogenetic and cytometric tools. Plant Cell Reports 27, 1227–1233.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Alvarez E
(1997) The strategy goes detecting chromosome-specific rearrangements in rye. Genome 40, 451–457.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Banks P
(1984) A new diploid chromosome number for tomato (Lycopersicon esculentum). Canadian Journal of Genetics and Cytology 26, 636–639.
Barg R,
Sobolev I,
Eilon T,
Gur A,
Chmelnitsky I,
Shabtai S,
Grotewold E, Salts Y
(2005) The tomato early fruit specific gene Lefsm1 defines a novel class of plant-specific SANT/MYB domain proteins. Planta 221, 197–211.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Carvalho CR,
Clarindo WR, Almeida PM
(2007) Plant cytogenetics: still looking for the perfect mitotic chromosomes. Nucleus 50, 453–462.
Carvalho CR,
Clarindo WR,
Praça MM,
Araújo FS, Carels N
(2008) Genome size, base composition and karyotype of Jatropha curcas L., an important biofuel plant. Plant Science 174, 613–617.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
Clarindo WR, Carvalho CR
(2006) A high quality chromosome preparation from cell suspension aggregates culture of Coffea canephora. Cytologia 71, 243–249.
| Crossref | GoogleScholarGoogle Scholar |
Clarindo WR, Carvalho CR
(2008) First Coffea arabica karyogram showing that this species is a true allotetraploid. Plant Systematics and Evolution 274, 237–241.
| Crossref | GoogleScholarGoogle Scholar |
Clarindo WR, Carvalho CR
(2009) Comparison of the Coffea canephora and C. arabica karyotype based on chromosomal DNA content. Plant Cell Reports 28, 73–81.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Clarindo WR,
Carvalho CR, Alves BMG
(2007) Mitotic evidence for the tetraploid nature of Glycine max provided by high quality karyograms. Plant Systematics and Evolution 265, 101–107.
| Crossref | GoogleScholarGoogle Scholar |
Coppoolse ER,
de Vroomen MJ,
van Gennip F,
Hersmus BJ, van Haaren MJ
(2005) Size does matter: pre-mediated somatic deletion efficiency depends on the distance between the target lox-sites. Plant Molecular Biology 58, 687–698.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Doležel J, Göhde W
(1995) Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry. Cytometry 19, 103–106.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Doležel J,
Sgorbati S, Lucretti S
(1992) Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiologia Plantarum 85, 625–631.
| Crossref | GoogleScholarGoogle Scholar |
Freitas DV,
Carvalho CR,
Filho FJN, Astolfi-Filho S
(2007) Karyotype with 210 chromosomes in guaraná (Paullinia cupana ‘Sorbilis’). Journal of Plant Research 120, 399–404.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Galbraith DW,
Harkins KR,
Maddox JM,
Ayres NM,
Sharma DP, Firoozabady E
(1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220, 1049–1051.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Gregory RT
(2004) Insertion-deletion biases and the evolution of genome size. Gene 324, 15–34.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Guerra MS
(1986) Reviewing the chromosome nomenclature of Levan et al. Revista Brasileira de Genetica 9, 741–743.
Janssen B,
Williams A,
Chen J,
Mathern J,
Hake S, Sinha N
(1998) Isolation and characterization of two knotted-like homeobox genes from tomato. Plant Molecular Biology 36, 417–425.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Kato K,
Ohta K,
Komata Y,
Araki T,
Kanahama K, Kanayama Y
(2005) Morphological and molecular analyses of the tomato floral mutant leafy inflorescence, a new allele of falsiflora. Plant Science 169, 131–138.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
Kerr EA
(1982) Single flower truss ‘stf’ appears to be on chromosome 3. Tomato Genetics Cooperative 32, 31–40.
Khush GS, Rick CM
(1963) Meiosis of hybrids between Lycopersicon esculentum and Solanum pennellii. Genetica 33, 167–183.
| Crossref | GoogleScholarGoogle Scholar |
Lapitan NLV,
Ganal MW, Tanksley SD
(1989) Somatic chromosome karyotype of tomato based on in situ hybridization of the TGRI satellite repeat. Genome 32, 992–998.
Levan A,
Fredga A, Sanderberg AA
(1964) Nomenclature for centromeric position in chromosome. Hereditas 52, 201–220.
| Crossref |
Liharska TB,
Hontelez J,
van Kammen A,
Zabel P, Koornneef M
(1997) Molecular mapping around the centromere of tomato chromosome 6 using irradiation-induced deletions. Theoretical and Applied Genetics 95, 969–974.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
Loureiro J,
Rodriguez E,
Doležel J, Santos C
(2006) Comparison of four nuclear isolation buffers for plant DNA flow cytometry. Annals of Botany 98, 679–689.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Mao L,
Begum D,
Chuang H,
Budiman MA,
Szymkowiak EJ,
Irish EE, Wing RA
(2000) JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development. Nature 406, 910–913.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Poggio L, Hunziker JH
(1986) Nuclear DNA content variation in Bulnesia. Journal of Heredity 77, 43–48.
Rosado TB,
Clarindo WR, Carvalho CR
(2009) An integrated cytogenetic, flow and image cytometry procedure used to measure the DNA content of Zea mays A and B chromosomes. Plant Science 176, 154–158.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
Samach A, Lotan H
(2007) The transition to flowering in tomato. Plant Biotechnology 24, 71–82.
Schubert I
(2007) Chromosome evolution. Current Opinion in Plant Biology 10, 109–115.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Schubert I,
Pecinka A,
Meister A,
Schubert V,
Klatte M, Jovtchev G
(2004) DNA damage processing and aberration formation in plants. Cytogenetic and Genome Research 104, 104–108.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Sherman JD, Stack SM
(1992) Two-dimensional spreads of synaptonemal complexes from solanaceous plants. V. Tomato (Lycopersicon esculentum) karyotype and idiogram. Genome 35, 354–359.
Siroky J,
Zluvova J,
Riha K,
Shippen DE, Vyskot B
(2003) Rearrangements of ribosomal DNA clusters in late generation telomerase-deficient Arabidopsis. Chromosoma 112, 116–123.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |