Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Contrasting ecotypic differentiation for growth and survival in Pinus canariensis

Rosana López A , Ami Zehavi B , José Climent C D and Luis Gil A
+ Author Affiliations
- Author Affiliations

A U. D. Anatomía, Fisiología y Genética vegetal. ETSI Montes, Universidad Politécnica de Madrid, Ciudad Universitaria, Madrid 28040, Spain.

B KKL Forest Department, Eshtaol, 99775, Israel.

C CIFOR. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra, A Coruña km 7.5, Madrid 28040, Spain.

D Corresponding author. Email: climent@inia.es

Australian Journal of Botany 55(7) 759-769 https://doi.org/10.1071/BT07016
Submitted: 1 February 2007  Accepted: 10 July 2007   Published: 15 November 2007

Abstract

We tested genetic and environmental effects and their interaction on the behaviour of 21 provenances of Pinus canariensis Chr. Sm. Ex DC from the Canary Islands and three seed sources from Israel at seven study sites covering a wide range of ecological conditions. Survival and growth traits (height, diameter and polycyclism) and their relationship with environmental parameters were assessed to evaluate their adaptive value and establish patterns of variation of the species inside and outside its natural distribution area. The results showed a high level of ecotypic differentiation for survival. As a general pattern, seed sources from favourable environments exhibited lower survival rates at dry sites than those from harsh environments (r = –0.76, P < 0.05, between survival and site index at the seed source). By contrast, growth traits presented a high phenotypic plasticity, scarce differentiation among seed sources and a negligible genotype × environment interaction. With few exceptions, local provenances from the Canary Islands did not stand out for survival or growth when compared with the rest at each trial site, whereas local seed sources from Israel were among the best growing and survived better at the experimental sites in this country. Therefore, the possibility of a locally adapted land race in Israel is discussed. We also discuss the low geographic differentiation for growth in the Canary Islands pine in the light of the current knowledge of the species’ life history and the potential use of this species in reforestation programs in semi-arid environments.


Acknowledgements

This research was funded by the Canary Islands Government (Viceconsejería de Medio Ambiente) and the Cabildos of Tenerife and Gran Canaria. We especially thank all people involved in the plantation and measurements of both trials. Rosana López holds a fellowship of the Spanish Ministry of Education and Science. José Climent was supported by a ‘Ramón y Cajal’ Fellowship.


References


Aboal JR, Jimenez MS, Morales D, Gil P (2000) Effects of thinning on throughfall in Canary Islands pine forest—the role of fog. Journal of Hydrology 238, 218–230.
Crossref | GoogleScholarGoogle Scholar | open url image1

Agee JK (1998) Fire and pine ecosystems. In ‘Ecology and biogeography of Pinus’. (Ed. DM Richardson) pp. 193–218. (Cambridge University Press: Cambridge)

Alía R, Gil L, Pardos JA (1995) Performance of 43 Pinus pinaster Ait. provenances on 5 locations in central Spain. Silvae Genetica 44, 75–81. open url image1

Alía R, Moro J, Denis JB (1997) Performance of Pinus pinaster provenances in Spain: interpretation of the genotype by environment interaction. Canadian Journal of Forest Research 27, 1548–1559.
Crossref | GoogleScholarGoogle Scholar | open url image1

Allen HL, Wentworth TR (1993) Vegetation control and site preparation affect patterns of shoot elongation for 3-year-old loblolly-pine. Canadian Journal of Forest Research 23, 2110–2115.
Crossref | GoogleScholarGoogle Scholar | open url image1

Arévalo JR, Fernández-Palacios JM (2005) From pine plantations to natural stands. Ecological restoration of a Pinus canariensis Sweet ex Spreng forest. Plant Ecology 181, 217–226.
Crossref | GoogleScholarGoogle Scholar | open url image1

Atzmon N, Moshe Y, Schiller G (2004) Ecophysiological response to severe drought in Pinus halepensis Mill. trees of two provenances. Plant Ecology 171, 15–22.
Crossref | GoogleScholarGoogle Scholar | open url image1

Awada T, Radoglou K, Fotelli MN, Constantinidou HIA (2003) Ecophysiology of seedlings of three Mediterranean pine species in contrasting light regimes. Tree Physiology 23, 33–41.
PubMed |
open url image1

Blanco A , Castroviejo M , Fraile JL , Gandullo JM , Muñoz LA , Sánchez O (1989) ‘Estudio ecológico del pino canario.’ Serie Técnica No. 6. (ICONA: Madrid)

Bloom AJ, Chapin FS, Mooney HA (1985) Resource limitation in plants—an economic analogy. Annual Review of Ecology and Systematics 16, 363–392. open url image1

Bongarten BC, Teskey RO (1987) Dry weight partitioning and its relationship to productivity in loblolly pine seedlings from seven sources. Forest Science 33, 255–267. open url image1

Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics 13, 115–155. open url image1

Carracedo JC , Day S (2002) ‘Canary Islands.’ (Terra Publishing: Harperden, UK)

Castro M , Martín-Vide J , Alonso S (2005). El clima de España: pasado, presente y escenarios de clima para el siglo XXI. In ‘Evaluación preliminar de los impactos en España por efecto del cambio climático’. (Ed. JM Moreno) pp. 1–64. (Ministerio de Medio Ambiente: Madrid)

Chambel MR, Climent J, Alía R, Valladares F (2005) Phenotypic plasticity: a useful framework for understanding adaptation in forest species. Investiación Agraria Sistemas y Recursos Forestales 14, 334–344. open url image1

Climent J, Chambel MR, Gil L, Pardos JA (2003) Vertical heartwood variation patterns and prediction of heartwood volume in Pinus canariensis Sm. Forest Ecology and Management 174, 203–211.
Crossref | GoogleScholarGoogle Scholar | open url image1

Climent J, Chambel MR, Pérez E, Gil L, Pardos JA (2002a) Relationship between heartwood radius and early radial growth, tree age, and climate in Pinus canariensis. Canadian Journal of Forest Research 32, 103–111.
Crossref | GoogleScholarGoogle Scholar | open url image1

Climent J, Chambel MR, López R, Mutke S, Alía R, Gil L (2006) Population divergence for heteroblasty in the Canary Island pine (Pinus canariensis, Pinaceae). American Journal of Botany 93, 840–848. open url image1

Climent J, Gil L, Pardos JA (1998) Xylem anatomical traits related to resinous heartwood formation in Pinus canariensis Sm. Trees—Structure and Function 12, 139–145. open url image1

Climent J, Gil L, Pérez E, Pardos JA (2002b) Efecto de la procedencia en la supervivencia de plántulas de Pinus canariensis Sm. en medio árido. Investiación Agraria Sistemas y Recursos Forestales 11, 171–180. open url image1

Climent J, Tapias R, Pardos JA, Gil L (2004) Fire adaptations in the Canary Islands pine (Pinus canariensis). Plant Ecology 171, 185–196.
Crossref | GoogleScholarGoogle Scholar | open url image1

Court-Picon M, Gadbin-Henry C, Guibal F, Roux M (2004) Dendrometry and morphometry of Pinus pinea L. in Lower Provence (France): adaptability and variability of provenances. Forest Ecology and Management 194, 319–333.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cregg BM (1994) Carbon allocation, gas exchange, and needle morphology of Pinus ponderosa genotypes known to differ in growth and survival under imposed drought. Tree Physiology 14, 883–898.
PubMed |
open url image1

Dejong G (1990) Quantitative genetics of reaction norms. Journal of Evolutionary Biology 3, 447–468.
Crossref | GoogleScholarGoogle Scholar | open url image1

Eriksson G, Jonsson A, Dormling I, Norell L, Stener LG (1993) Retrospective early tests of Pinus sylvestris L. seedlings grown under five nutrient regimes. Forest Science 39, 95–117. open url image1

Gieger T, Leuschner C (2004) Altitudinal change in needle water relations of Pinus canariensis and possible evidence of a drought-induced alpine timberline on Mt. Teide, Tenerife. Flora 199, 100–109. open url image1

Gil L, Climent J, Nanos N, Mutke S, Ortiz I, Schiller G (2002) Cone morphology variation in Pinus canariensis Sm. Plant Systematics and Evolution 235, 35–51.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gómez A, González-Martínez SC, Collada C, Climent J, Gil L (2003) Complex population genetic structure in the endemic Canary Island pine revealed using chloroplast microsatellite markers. Theoretical and Applied Genetics 107, 1123–1131.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

González-Martínez SC, Alía R, Gil L (2002) Population genetic structure in a Mediterranean pine (Pinus pinaster Ait.): a comparison of allozyme markers and quantitative traits. Heredity 89, 199–206.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

González-Martínez SC, Mariette S, Ribeiro MM, Burban C, Raffin A, Chambel MR, Ribeiro CAM, Aguiar A, Plomion C, Alía R, Gil L, Vendramin GG, Kremer A (2004) Genetic resources in maritime pine (Pinus pinaster Aiton): molecular and quantitative measures of genetic variation and differentiation among maternal lineages. Forest Ecology and Management 197, 103–115.
Crossref | GoogleScholarGoogle Scholar | open url image1

Isik F, Isik K, Yildirim T, Li BL (2002) Annual shoot growth components related to growth of Pinus brutia. Tree Physiology 22, 51–58.
PubMed |
open url image1

Johnsen O, Skroppa T (1996) Adaptive properties of Picea abies progenies are influenced by environmental signals during sexual reproduction. Euphytica 92, 67–71.
Crossref | GoogleScholarGoogle Scholar | open url image1

Klaus W (1989) Mediterranean pines and their history. Plant Systematics and Evolution 162, 133–163.
Crossref | GoogleScholarGoogle Scholar | open url image1

Korol L, Gil L, Climent J, Zehavi A, Schiller G (1999) Canary islands pine (Pinus canariensis Chr. Sm. ex DC) 2. Gene flow among native populations. Forest Genetics 6, 277–282. open url image1

Lal M, Harasawa H, Takahashi K (2002) Future climate change and its impacts over small island states. Climate Research 19, 179–192.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lascoux M, Kang H, Lundkvist K (1994) Growth of 24 full-sib families of Pinus sylvestris L. at 6 relative nutrient addition rates. II. Relation between growth components. Scandinavian Journal of Forest Research 9, 115–123. open url image1

Lopez GA, Potts BM, Dutkowski GW, Traverso JMR (2001) Quantitative genetics of Eucalyptus globulus: affinities of land race and native stand localities. Silvae Genetica 50, 244–252. open url image1

Lopez GA, Potts BM, Vaillancourt RE, Apiolaza LA (2003) Maternal and carryover effects on early growth of Eucalyptus globulus. Canadian Journal of Forest Research 33, 2108–2115.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lortie CJ, Aarssen LW (1996) The specialization hypothesis for phenotypic plasticity in plants. International Journal of Plant Sciences 157, 484–487.
Crossref | GoogleScholarGoogle Scholar | open url image1

Matheson AC, Cotterill PP (1990) Utility of genotype × environment interactions. Forest Ecology and Management 30, 159–174.
Crossref | GoogleScholarGoogle Scholar | open url image1

Mátyás C (1994) Modelling climate change effects with provenance test data. Tree Physiology 14, 797–804.
PubMed |
open url image1

Mutke S, Gordo J, Climent J, Gil L (2003) Shoot growth and phenology modelling of grafted Stone pine (Pinus pinea L.) in Inner Spain. Annals of Forest Science 60, 527–537.
Crossref | GoogleScholarGoogle Scholar | open url image1

Mutke S, Gordo J, Gil L (2005) Variability of Mediterranean stone pine cone production: yield loss as response to climate change. Agricultural and Forest Meteorology 132, 263–272.
Crossref | GoogleScholarGoogle Scholar | open url image1

Navascues M, Vaxevanidou Z, González-Martínez SC, Climent J, Gil L, Emerson BC (2006) Chloroplast microsatellites reveal colonization and metapopulation dynamics in the Canary Island pine. Molecular Ecology 15, 2691–2698.
PubMed |
open url image1

Pardos M, Climent J, Gil L, Pardos JA (2003) Shoot growth components and flowering in grafted Pinus halepensis Mill. Trees—Structure and Function 17, 442–450.
Crossref | GoogleScholarGoogle Scholar | open url image1

Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Annual Review of Ecology Evolution and Systematics 37, 187–214.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pinyopusarerk K, Doran JC, Williams ER, Wasuwanich P (1996) Variation in growth of Eucalyptus camaldulensis provenances in Thailand. Forest Ecology and Management 87, 63–73.
Crossref | GoogleScholarGoogle Scholar | open url image1

Prasad NS, Dieter MJ (1998) Genetic control of growth and form in early-age tests of Casuarina equisetifolia in Andhra Pradesh, India. Forest Ecology and Management 110, 49–58.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rebetez M, Dobbertin M (2004) Climate change may already threaten Scots pine stands in the Swiss Alps. Theoretical and Applied Climatology 79, 1–9.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rehfeldt GE, Gallo LA (2001) Introduction of ponderosa pine and Douglas-fir to Argentina. Using quantitative traits for retrospective identification and prospective selection of provenances. New Forests 21, 35–44.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rehfeldt GE, Tchebakova NM, Parfenova YI, Wykoff WR, Kuzmina NA, Milyutin LI (2002) Intraspecific responses to climate in Pinus sylvestris. Global Change Biology 8, 912–929.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rehfeldt GE, Ying CC, Spittlehouse DL, Hamilton DA (1999) Genetic responses to climate in Pinus contorta: niche breath, climate change, and reforestation. Ecological Monographs 69, 375–407. open url image1

Ruiz de la Torre J (1971) ‘Árboles y arbustos de la España Peninsular.’ (Fundación Conde del Valle de Salazar. ETSIM: Madrid)

Sáenz-Romero C, Guzmán-Reyna R, Rehfeldt GE (2006) Altitudinal genetic variation among Pinus oocarpa populations in Michoacán, Mexico. Implications for seed zoning, conservation, tree breeding and global warming. Forest Ecology and Management 229, 340–350.
Crossref | GoogleScholarGoogle Scholar | open url image1

Schlichting CD (1986) The evolution of phenotypic plasticity in plants. Annual Review of Ecology and Systematics 17, 667–693.
Crossref | GoogleScholarGoogle Scholar | open url image1

Schmidtling RC (1994) Use of provenance tests to predict response to climate change: Loblolly pine and Norway spruce. Tree Physiology 14, 805–817.
PubMed |
open url image1

Serra E , Cionarescu A (1960) ‘Le Canarien (Crónica francesa de la Conquista de Canarias).’ Fontes Rerum Canariorum, IX. Vol. I. (Instituto de Estudios Canarios: La Laguna, Tenerife)

Sperling FN, Washington R, Whittaker RJ (2004) Future climate change of the subtropical North Atlantic: implications for the cloud forests of Tenerife. Climatic Change 65, 103–123.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sultan SE (2000a) Phenotypic plasticity for plant development, function and life-history. Trends in Plants Science 5, 537–542.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sultan SE (2000b) Phenotypic plasticity for fitness components in polygonum species of contrasting ecological breath. Ecology 82, 328–343. open url image1

Vaxevanidou Z, González-Martínez SC, Climent J, Gil L (2006) Tree populations: bordering on extinction: a study case in the endemic Canary Islands pine. Biological Conservation 129, 451–460.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wells C, Pigliucci M (2000) Adaptive phenotypic plasticity: the case of heterophylly in aquatic plants. Perspectives in Plant Ecology, Evolution and Systematics 3, 1–18.
Crossref | GoogleScholarGoogle Scholar | open url image1

Williams ER , Matheson AC , Harwood CE (2002) ‘Experimental design and analysis for tree improvement.’ (CSIRO Publishing: Melbourne)

Zobel BJ , Van Wyck G , Stahl P (1988) ‘Growing exotic forests.’ (Wiley & Sons: New York)