Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Seed polymorphism, dormancy and germination of Salsola affinis (Chenopodiaceae), a dominant desert annual inhabiting the Junggar Basin of Xinjiang, China

Yan Wei A B , Ming Dong A and Zhen-ying Huang A C
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Quantitative Vegetation Ecology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China.

B College of Forestry, Xinjiang Agricultural University, Urumqi 830052, P.R. China.

C Corresponding author. Email: zhenying@ibcas.ac.cn

Australian Journal of Botany 55(4) 464-470 https://doi.org/10.1071/BT06016
Submitted: 28 January 2006  Accepted: 28 November 2006   Published: 20 June 2007

Abstract

Salsola affinis C.A. Meyer, a dominant annual that primarily occurs in deserts of the Junggar Basin, China, produces three types of utricles that differ in shape, size, colour and size of wings on the fruits. Type A fruits have lignified perianths with long wings and green utricles, and they can easily be dispersed long distances from the mother plant by wind. Type B fruits have lignified perianths with short wings, or no wings, and green utricles, and they are tightly attached to the mother plant. Type C fruits have tepals without wings and yellow utricles, and are also attached tightly to the mother plant. Freshly harvested Type A and Type B seeds (utricles) can germinate at 5–30°C in light or in darkness. Rate and final percentage of germination of Type B seeds are higher than those of Type A seeds. Type C seeds have non-deep physiological dormancy; they germinate slowly and to a low percentage. Four weeks of cold stratification, scarification of covering layers (pericarp and seed coat) and treatment with KNO3 can increase the percentage and rate of seed germination. Utricle polymorphism may allow Salsola affinis to respond to spatial and temporal variations in environmental conditions, thus increasing the chances for survival of this annual species in its harsh desert habitats.


Acknowledgements

We thank the two anonymous referees for their critical comments on this paper. This research was financially supported by Program for New Century Excellent Talents in University from Ministry of Education of the P.R. China (2005), the Program of National Natural Science Foundation of China (30260009, 30570281) and the Ministry of Science and Technology of China (2005DKA21006).


References


Austenfeld FA (1988) Seed dimorphism in Salicornia europaea: nutrient reserves. Physiologia Plantarum 73, 502–504.
Crossref | GoogleScholarGoogle Scholar | open url image1

Baskin CC , Baskin JM (1998) ‘Seeds, ecology, biogeography and evolution of dormancy and germination.’ (Academic Press: San Diego, CA)

Baskin JM, Baskin CC (2004) A classification system for seed dormancy. Seed Science Research 14, 1–16. open url image1

Beadle NCW (1952) Studies in halophytes I: The germination of the seed and establishment of the seedling of five species of Atriplex in Australian. Ecology 33, 49–62.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cheplick GP (1994) Life history evolution in amphicarpic plants. Plant Species Biology 9, 119–131.
Crossref | GoogleScholarGoogle Scholar | open url image1

Chinese Academy of Sciences (1978) ‘Xinjiang vegetation and utilization.’ (Science Press: Beijing) [In Chinese]

Côme D (1982) Germination. In ‘Croissance et développement. Physiologie végétale II’. (Ed. P Mazliak) pp. 129–225. (Hermann: Paris)

Drysdale FR (1973) Variation of seed size in Atriplex patula var. hastate (L.) Gray. Rhodora 75, 106–110. open url image1

Evenari M, Kadouri A, Gutterman Y (1977) Ecophysiological investigations on the amphicarpy of Emex spinosa (L.) CAMPD. Flora 166, 223–238. open url image1

Friedman J, Stein Z (1980) The influence of seed dispersal mechanisms on the dispersion of Anastatica hierochuntica (Cruciferae) in the Negev desert of Israel. Journal of Ecology 68, 43–50.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gutterman Y (1972) Delayed seed dispersal and rapid germination as survival mechanisms of the desert plant Blepharis persica (Burm.) Kuntze. Oecologia 10, 145–149.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gutterman Y (1993) ‘Seed germination of desert plants.’ (Springer-Verlag: Berlin)

Gutterman Y (2002) ‘Survival strategies of annual desert plants.’ (Springer-Verlag: Berlin)

Harper JL (1977) ‘Population biology of plants.’ (Academic Press: London)

He X, Li F (1995) Seed morphology of Atriplex L. from china and its taxonomic significance. Bulletin of Botanical Research [In Chinese with English abstract] 15, 65–71. open url image1

Huang Z, Dong M, Gutterman Y (2004a) Factors influencing seed dormancy and germination in sand, and seedling survival under desiccation, of Psammochloa villosa (Poaceae), inhabiting the moving sand dunes of Ordos, China. Plant and Soil 259, 231–241.
Crossref | GoogleScholarGoogle Scholar | open url image1

Huang Z, Dong M, Gutterman Y (2004b) Caryopses dormancy, germination and seedling emergence in sand, of Leymus racemosus (Poaceae), a perennial sand dune grass inhabiting the Junggar Basin of Xinjiang, China. Australian Journal of Botany 52, 519–528.
Crossref | GoogleScholarGoogle Scholar | open url image1

Khan MA, Unger IA (1984) Seed polymorphism and germination responses to salinity stress in Atriplex triangularis Willd. Botanical Gazette 145, 487–494.
Crossref | GoogleScholarGoogle Scholar | open url image1

Khan MA, Gul B, Weber DJ (2001) Germination of dimorphic seeds of Suaeda moquinii under high salinity stress. Australian Journal of Botany 49, 185–192.
Crossref | GoogleScholarGoogle Scholar | open url image1

Koller D (1957) Germination-regulating mechanisms in some desert seeds. IV. Atriplex dimorphostegia Kar. et Kir. Ecology 38, 1–13.
Crossref | GoogleScholarGoogle Scholar | open url image1

Koller D, Roth N (1964) Studies on the ecological and physiological significance of amphicarpy in Gymnarrhena micrantha (Compositae). American Journal of Botany 51, 26–35.
Crossref | GoogleScholarGoogle Scholar | open url image1

Mandák B (1997) Seed heteromorphism and the life cycle of plants: a literature review. Preslia 69, 129–159. open url image1

Mao ZM (1994) ‘Flora of Xinjiangensis-Tomus 2(1).’ (Xinjiang Sci-Tec and Public Health Press: Urumqi) [In Chinese]

Negbi M, Tamari B (1963) Germination of chlorophyllous and achlorophyllous seeds of Salsola volkensii and Aellenia autrani. Israel Journal of Botany 12, 124–135. open url image1

Sokal RR , Rohlf EJ (1995) ‘Biometry.’ 3rd edn. (Freeman: San Francisco)

Stebbins GL (1974) ‘Flowering plants: evolution above the species level.’ (Belknap: Cambridge, MA)

Takeno K, Yamaguchi H (1991) Diversity in seed germination behavior in relation to heterocarpy in Salsola komarovii Iljin. Botanical Magazine, Tokyo 104, 207–215.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ungar IA (1987) Population ecology of halophyte seeds. Botanical Review 53, 301–334. open url image1

Van der Pijl L (1982) ‘Principles of dispersal in higher plants.’ 3rd edn. (Springer-Verlag: Berlin)

Venable DL (1985) The evolutionary ecology of seed heteromorphism. American Naturalist 126, 577–595.
Crossref | GoogleScholarGoogle Scholar | open url image1

Venable DL, Levin DA (1985) Ecology of achene dimorphism in Heterotheca latifolia I. Achene structure, germination and dispersal. Journal of Ecology 73, 133–145.
Crossref | GoogleScholarGoogle Scholar | open url image1

Venable DL, Búrquez A, Corral G, Morale E, Espinosa F (1987) The ecology of seed heteromorphism in Heterosperma pinnatum in central Mexico. Ecology 68, 65–76.
Crossref | GoogleScholarGoogle Scholar | open url image1

Venable DL, Dyreson E, Morales E (1995) Population dynamics consequences and evolution of seed traits of Heterosperma pinnatum (Asteraceae). American Journal of Botany 82, 410–420.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wallace A, Rhods WA, Frolich EF (1968) Germination behavior of Salsola as influenced by temperature, moisture, depth of planting, and gamma irradiation. Agronomy Journal 60, 76–78. open url image1

Williams JT, Harper JL (1965) Seed polymorphism and germination. I: the influence of nitrates and low temperatures on the germination of Chenopodium album. Weed Research 5, 141–150.
Crossref | GoogleScholarGoogle Scholar | open url image1

Yamaguchi H, Ichihara K, Takeno K, Hori Y, Saito T (1990) Diversities in morphological characteristics and seed germination behavior in fruits of Salsola komarovii Iljin. Botanical Magazine, Tokyo 103, 177–190.
Crossref | GoogleScholarGoogle Scholar | open url image1

Young JA, Evans RA (1972) Germination and establishment of Salsola in relation to seedbed environment. I: Temperature, afterripening, and moisture relations of Salsola seeds as determined by laboratory studies. Agronomy Journal 64, 214–218. open url image1

Zhao K , Li F (1999) ‘Halophytes of China.’ (Science Press: Beijing). [In Chinese].

Zhu GL , Sergei LM , Steven EC (2003) ‘Flora of China. Vol. 5.’ (Science Press: Beijing)