Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Genetic diversity of the rare Asian plant, Trigonobalanus doichangensis (Fagaceae)

Weibang Sun A B , Chunyan Han A , Lianming Gao A and Carol A. Wilson C D
+ Author Affiliations
- Author Affiliations

A Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming 650204, The People’s Republic of China.

B Nanjing Forestry University, Nanjing 210037, the People’s Republic of China.

C Rancho Santa Ana Botanic Garden, 1500 North College Avenue, Claremont, CA 91711, USA.

D Corresponding author. Email: carol.wilson@cgu.edu

Australian Journal of Botany 55(1) 10-17 https://doi.org/10.1071/BT05113
Submitted: 1 July 2005  Accepted: 5 September 2006   Published: 18 January 2007

Abstract

Trigonobalanus doichangensis is a national rare and endangered fagaceous plant of China. It is currently restricted to five sites, four in Yunnan province in south-western China and one in northern Thailand. We investigated the genetic diversity of T. doichangensis to provide information for the effective preservation of the genetic diversity of the species. Randomly amplified polymorphic DNA (RAPD) markers were used to assess the genetic variation and structure in each of the five extant populations. Sixteen primers produced 157 fragments, of which 83 (53%) were polymorphic. The estimated species diversity of T. doichangensis, although lower than for most fagaceous species, was within the range of values that have been reported for the family. The presence of private and/or uncommon fragments in each population, the presence of unique phenotypes in all individuals sampled, and estimates of relatively high populational fixation and low gene flow indicated that the species diversity present was mostly distributed among the five isolated extant populations. Pairwise genetic distances between populations were not correlated with geographical distances as depicted by the resolution of one of the Chinese populations as most similar to the Thailand population. Conservation of this species should include preservation of each of the five distinct extant populations.


Acknowledgements

This work was supported by the important directional item of the Chinese Academy of Sciences (KSCX2-SW-104) and the special fund of China’s Yunnan government for the young and middle-aged qualified scientists and technicians (2006PY01-48). The authors thank Professor Weerachai Nanakorn, director of Queen Sirikit Botanic Garden in Thailand, for assistance in sample collection in Thailand. The authors are also grateful to Mr Fancai Kong, Mr Congren Li and Mr Yuan Zhou (Kunming Institute of Botany) for their kind help in sample collection in Yunnan, China.


References


Anonymous (1999) List of national key protected wild plants (first group). The Order of National Forestry Bureau and Agriculture Ministry of China, No. 4, pp. 2–13, Beijing.

Barrett SCH , Kohn JR (1991) Genetic and evolutionary consequences of small population size in plants: implications for conservation. In ‘Genetics and conservation of rare plants’. (Eds D Falk, K Holsinger) pp. 3–10. (Oxford University Press: Oxford)

Bodkin JL, Ballachey BE, Cronin MA, Scribner KT (1999) Population demographics and genetic diversity in remnant and translocated populations of sea otters. Conservation Biology 13, 1378–1385.
Crossref | GoogleScholarGoogle Scholar | open url image1

Caujapé-Castells J, Pedrola-Monfort J (2004) Designing ex-situ conservation strategies through the assessment of neutral genetic markers: application to the endangered Androcymbium gramineum. Conservation Genetics 5, 131–144.
Crossref | GoogleScholarGoogle Scholar | open url image1

Chen XY, Wang XH, Song YC (1997) Genetic diversity and differentiation of Cyclobalanopsis glauca populations in east China. Acta Botanica Sinica 39, 149–155. open url image1

Cheng ZP (2003) Polymorphic analysis of crisp peach germplasm by molecular biology. Journal of Anhui Agricultural University 30, 182–187. open url image1

Cheng ZP, Chen ZW, Hu CG (2003) Comparison of genetic differences in groups of Amygdalus persica revealed by RAPD. Journal of Wuhan Univiversity [Natural Science Edition] 49, 266–270. open url image1

Crepet WL, Nixon KC (1989) Earliest megafossil evidence of Fagaceae: phylogenetic and biogeographic implications. American Journal of Botany 76, 842–855.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dai SL, Chen JY, Li WB (1998) Application of RAPD analysis in the study on the origin of Chinese cultivated chrysanthemum. Acta Botanica Sinica 40, 1053–1059. open url image1

De Greef B, Triest L, De Cuyper B, Van Slycken J (1998) Assessment of intraspecific variation in half-sibs of Quercus petraea (Matt.) Liebl. ‘plus’ trees. Heredity 81, 284–290.
Crossref | GoogleScholarGoogle Scholar | open url image1

Doyle JJ, Doyle JL (1988) Isolation of plant DNA from fresh tissue. Focus 12, 13–15. open url image1

ECFC (Editing Committee of Flora of China) (1998) ‘Flora of China. Vol. 22.’ pp. 211–213. (Science Press: Beijing)

Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14, 2611–2620.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Forman L (1964) Trigonobalanus: a new genus of Fagaceae. Kew Bulletin 17, 381–396. open url image1

Fritsch P , Rieseberg LH (1996) The use of random amplified polymorphorphic DNA (RAPD) in conservation genetics. In ‘Molecular genetic approaches in conservation genetics’. (Eds TB Smith, RK Wayne) pp. 54–73. (Oxford University Press: Oxford, UK)

Fu LG (1992) ‘China Plant Red Data Book. Vol. 1.’ pp. 302–303. (Science Press: Beijing)

Gao HD (2001) Genetic analysis of cultivars of chestnut (Castanea mollisima) by the technique of RAPD. Journal of Jiangsu Forestry Science & Technology 28, 1–3. open url image1

Godt MJW, Hamrick JL (1996) Genetic structure of two endangered pitcher plants, Sarracenia jonesii and Sarracenia oreophila (Aarraceniceae). American Journal of Botany 83, 1016–1023.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hamrick JL , Godt MJW , Murawski DA , Loveless MD (1991) Correlations between species traits and allozyme diversity: implications for conservation biology. In ‘Genetics and conservation of rare plants’. (Eds DA Falk, K Holsinger) pp. 75–86. (Oxford University Press: New York)

Han CY, Sun WB (2005) Karyotype of the four populations of Trigonobalanus doichangensis (Fagaceae), a rare and endangered plant in China. Acta Botanica Yunnanica 27, 95–100. open url image1

Hou D (1971) Chromosome numbers of Trigonobalanus verticillata Forman (Fagaceae). Acta Botanica Neerlandica 20, 533–549. open url image1

Hsu YC, Wang CJ, Wu CY, Li XW (1981) Trigonobalanus Forman: a new recorded genus of Fagaceae in China. Acta Botanica Yunnanica 3, 213–215. open url image1

Kamiya K, Harada K, Clyde MM, Mohamed AL (2002) Genetic variation of Trigonobalanus verticillata, a primitive species of Fagaceae, in Malaysia revealed by chloroplast sequences and AFLP markers. Genes & Genetic Systems 77, 177–186.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kitamura K, Tachida H, Takenaka K, Furubayashi K, Kawano S (2005) Demographic genetics of Siebold’s beech (Fagaceae, Fagus crenata Blume) populations in the Tanzawa Mountains, central Honshu, Japan. II. Spatial differentiation and estimation of immigration rates using a stepping-stone structure. Plant Species Biology 20, 133–144. open url image1

Lande R (1988) Genetics and demography in biological conservation. Science 241, 1455–1460.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Li J (1994) A preliminary study on the floristic elements of the community of Formannordendron doichangensis. Acta Botanica Yunnanica 16, 17–24. open url image1

Li JQ (1999) The origin and geographical distribution of Fagaceae. In ‘The geography of spermatophytic families and genera’. (Ed. AM Lu) pp. 218–235. (Science Press: Beijing)

Li J, Chen KY, Li BS (1997) Preliminary study on genetic structure of alpine oaks in Tibet. Journal of Beijing Forestry University 19, 93–98. open url image1

Li QM, Xu ZF, He TH (2002) Ex situ genetic conservation of endangered Vatica guangxiensis (Diperocarpaceae) in China. Biological Conservation 106, 151–156.
Crossref | GoogleScholarGoogle Scholar | open url image1

Li WY, Gu WC, Zhou SL (2003) AFLP analysis on genetic diversity of Quercus mongolica populations. Scientia Silvae Sinica 39, 29–36. open url image1

Liao HM, Gou GQ, Ye NG (1998) A study on seedling morphology and anatomy and systematic position of Trigonobalanus doichangensis Form. Journal of Wuhan Botanical Research 16, 223–226. open url image1

Lozano-C G, Hernandez-Camacho J, Henao-S JE (1979) Hallazgo del genero Trigonobalanus Forman 1962 (Fagaceae) en el Neotropico-I. Caldasia 12, 517–537. open url image1

Mattner J, Zawko G, Rossetto M, Krauss SL, Dixon KW, Sivasithamparam K (2002) Conservation genetics and implications for restoration of Hemigenia exilis (Lamiaceae), a serpentine endemic from Western Australia. Biological Conservation 107, 37–45.
Crossref | GoogleScholarGoogle Scholar | open url image1

Manos PS, Stanford AM (2001) The historical biogeography of Fagaceae: tracking the tertiary history of temperate and subtropical forests of the Northern Hemisphere. International Journal of Plant Sciences 162, S77–S93.
Crossref | GoogleScholarGoogle Scholar | open url image1

Manos PS, Steele KP (1997) Phylogenetic analyses of ‘higher’ Hamamelididae based on plastid sequence data. American Journal of Botany 84, 1407–1419.
Crossref | GoogleScholarGoogle Scholar | open url image1

Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590. open url image1

Nixon KC, Crepet WL (1989) Trigonobalanus (Fagaceae):taxonomic status and phylogenetic relationships. American Journal of Botany 76, 828–841.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155, 945–959.
PubMed |
open url image1

Qian W, Ge S, Hong D (2000) Assessment of genetic variation of Oryza granulate detected by RAPDs and ISSRs. Acta Botanica Sinica 42, 741–750. open url image1

Schneider S , Roessli D , Excoffier L (2000) ‘Arlequin: a software for population genetics data analysis, Vers. 2.000.’ (Genetics and Biometry Laboratory, Department of Anthropology, University of Geneva)

Slatkin M (1991) Inbreeding coeffiecients and coalescence times. Genetical research 58, 167–175.
PubMed |
open url image1

Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 130, 457–462. open url image1

Soepadmo E (1972) Fagaceae. Flora Malesiana (Series 1) 7, 265–403. open url image1

Sun WB, Zhou Y, Zhao JC, Chen G (2004) Current distribution, population attributes and biological characters of Trigonobalanus doichangensis in relation to its conservation. Acta Ecologica Sinica 24, 352–358. open url image1

Tomaru N, Takahashi M, Tsumura Y, Takahashi M, Ohba K (1998) Intraspecific variation and phylogeographic patterns of Fagus crenata (Fagaceae) mitochondrial DNA. American Journal of Botany 85, 629–636.
Crossref | GoogleScholarGoogle Scholar | open url image1

Torres E, Iriondo JM, Perez C (2003) Genetic structure of an endangered plant, Antirrhinus microphyllum (Scrophulariaceae): Allozyme and RAPD analysis. American Journal of Botany 90, 85–92. open url image1

Wang PL, Zhang JT (1988) On the pollen morphology and systematic position of Trigonobalanus doichangensis. Acta Phytotaxonomica Sinica 26, 44–46. open url image1

Wang PL, Pu FT, Zheng ZH (1998) Palynological evidence for taxonomy of Trigonobalanus (Fagaceae). Acta Phytotaxonomica Sinica 36, 238–241. open url image1

Wang ZR (1996) ‘Plant allozyme analysis.’ pp. 148–149. (Science Press: Beijing)

Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphism amplified polymorphic by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18, 6531–6535.
Crossref | PubMed |
open url image1

Wong KC, Sun M (1999) Reproductive biology and conservation genetics of Goodyera procera (Orichidaceae). American Journal of Botany 86, 1406–1413.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wu SM, Xiao SQ (1989) Comparative anatomical studies on the woods of Castanea Mill. and Trigonobalanus Forman in China. Guihaia 22, 567–571. open url image1

Xia M, Zhou XF, Zhao SD (2001) RAPD analysis on genetic diversity of natural populations of Quercus mongolica. Scientia Silvae Sinica 37, 126–133. open url image1

Yeh FC , Yang RC , Boyle TBJ , Ye ZH , Mao JX (1997) ‘POPGENE, the user-friendly shareware for population genetic analysis.’ (Molecular Biology and Biotechnology Centre, University of Alberta: Canada)

Yun R, Zhong M, Wang HX, Wei W, Qiao YQ, Hu ZA (1998) Study on DNA diversity of Liaodong oak population at Dongling Mountain region, Beijing. Acta Botanica Sinica 40, 169–175. open url image1

Zeng CY, Sun WB (2004) Blooming and fruiting habits, microspore genesis and development of male gametes of Trigonobalanus doichangensis. Journal of Wuhaan Botanical Research 22, 98–104. open url image1

Zhou Y, Sun WB, Li CR (2003) Preliminary study on seed germination of Trigonobalanus doichangensis. Journal of Wuhan Botanical Research 21, 73–76. open url image1

Zhou ZK (1999) Fossils of the Fagaceae and their implications in systematics and biogeography. Acta Phytotaxonomica Sinica 37, 369–385. open url image1

Zhu QH, Pan HX, Zhu GQ, Yin TM, Zou HY, Huang MR (2002) Analysis of genetic structure of natural populations of Castanopsis fargesii by RAPDs. Acta Botanica Sinica 44, 1321–1326. open url image1

Zou YP , Ge S (2001) ‘The molecular marker in systematic and evolutionary botany.’ pp. 41–43. (Science Press: Beijing)