Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Small-scale patterns of abundance of mosses and lichens forming biological soil crusts in two semi-arid gypsum environments

I. Martínez A E , A. Escudero A , F. T. Maestre A B , A. de la Cruz A , C. Guerrero C and A. Rubio D
+ Author Affiliations
- Author Affiliations

A Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/ Tulipán, s/n, Móstoles, Spain.

B Department of Biology, Duke University, Phytotron Building, Science Drive, Box 90340, Durham, North Carolina 27708-0340, USA.

C Departamento de Agroquímica y Medio Ambiente, Universidad Miguel Hernández, 03202 Elche, Spain.

D Departamento de Silvopascicultura, E.T.S.I. Montes, Universidad Politécnica de Madrid, 28040-Madrid, Spain.

E Corresponding author. Email: isabel.martinez@urjc.es

Australian Journal of Botany 54(4) 339-348 https://doi.org/10.1071/BT05078
Submitted: 8 April 2005  Accepted: 27 October 2005   Published: 22 June 2006

Abstract

Despite important advances in the understanding of biological soil crusts and their key role in ecosystem processes in arid and semi-arid environments, little is known about those factors driving the small-scale patterns of abundance and distribution of crust-forming lichens and mosses. We used constrained ordination techniques (RDAs) to test the hypothesis that the spatial patterning of lichens and mosses is related to surface and subsurface soil variables in two semi-arid gypsum environments of Spain. Our results show that the abundance of mosses and lichens forming biological soil crusts was related to a limited set of variables (cover of bare soil and litter, soil respiration, potassium content and aggregate stability). Moreover, they provide some insights into the importance of these variables as drivers of biological soil-crust composition and abundance in semi-arid gypsum environments.


Acknowledgments

We thank Pilar Bernal and Rafael Clemente (CEBAS–CSIC) for help with C and N analysis. The work of FTM was supported by a MEC/Fulbright fellowship (FU2003–0398), funded by the Dirección General de Universidades and the Fondo Social Europeo. This research was supported by the Spanish Ministry of Science and Technology (project number REN 2003-03366) to AE and by the Community of Madrid (project number GR/AMB/0932/2004) to AE, FM and IM.


References


Anderson DC, Rushforth SR (1976) The cryptogam flora of desert soil crusts in Southern Utah, USA. Nova Hedwigia 28, 691–729. open url image1

Anderson DC, Harper KT, Holmgren RC (1982a) Factors influencing development of cryptogamic soil crusts in Utah deserts. Journal of Range Management 35, 180–185. open url image1

Anderson DC, Harper KT, Rushforth SR (1982b) Recovery of cryptogamic soil crusts from grazing on Utah winter ranges. Journal of Range Management 35, 355–359. open url image1

Belnap J , Eldridge D (2001) Disturbance and recovery of biological soil crusts. In ‘Biological soil crusts: structure, function, and management.’ (Eds J Belnap, OL Lange) pp. 363–383. (Springer-Verlag: Berlin)

Belnap J , Lange OL (Eds) (2001) ‘Biological soil crusts: structure, function, and management.’ (Springer-Verlag: Berlin)

Belnap J , Kaltenecker JH , Rosentreter R , Williams J , Leonard S , Eldridge D (2001) ‘Biological soil crusts: ecology and management’. (US Department of the Interior, Bureau of Land Management, and National Science and Technology Center: Denver, CO)

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B 57, 289–300. open url image1

Beymer RJ, Klopatek JM (1991) Potential contribution of carbon by microphytic crusts in pinyon-juniper woodlands. Arid Soil Research and Rehabilitation 5, 187–198. open url image1

Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055.
Crossref |
open url image1

ter Braak CJF (1990) ‘Update notes: Canoco version 3.1.’ (Microcomputer Power: Ithaca, NY)

ter Braak CJF , Smilauer P (1997) ‘Canoco for Windows version 4.0.’ (Centre for Biometry: Wagenigen, The Netherlands)

Bulluck LR, Brosiusb M, Evanylob GK, Ristaino JB (2002) Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Applied Soil Ecology 19, 147–160.
Crossref | GoogleScholarGoogle Scholar | open url image1

Burt R (Ed.) (2004) ‘Soil survey laboratory methods manual.’ (USDA, NCRS: Lincoln, NE)

Cameron RE (1972) A comparison of soil microbial system in hot, cold and polar desert regions. In ‘Ecophysiological foundation of ecosystem productivity in the arid zone’. (Ed. LE Rodin) pp. 185–192. (Nauka: Leningrad)

Crespo A, Barreno E (1975) Ensayo florístico y ecológico de la vegetación liquénica de los yesos del centro de España. Anales del Instituto Botanico Antonio José Cavanilles 32, 873–908. open url image1

Danin A, Barbour MG (1982) Microsuccession of cryptogams and phanerogams in the Dead Sea area, Israel. Flora 172, 173–179. open url image1

De Falco LA, Detling JK, Tracy C, Warren SD (2001) Physiological variation among native and exotic winter annual plants associated with microbiotic crusts in the Mojave Desert. Plant and Soil 234, 1–14.
Crossref | GoogleScholarGoogle Scholar | open url image1

Downing AJ, Selkirk PM (1993) Bryophytes on the calcareous soils of Mungo National Park, and arid area of southern central Australia. The Great Basin Naturalist 53, 13–23. open url image1

Eldridge DJ (1996) Distribution and floristics of terricolous lichens in soil crusts in arid and semi-arid New South Wales, Australia. Australian Journal of Botany 44, 581–599.
Crossref | GoogleScholarGoogle Scholar | open url image1

Eldridge DJ (1999) Distribution and floristics of moss- and lichen-dominated soil crusts in a patterned Callitris glaucophylla woodland in eastern Australia. Acta Oecologica 20, 159–170.
Crossref | GoogleScholarGoogle Scholar | open url image1

Eldridge DJ, Greene RSB (1994) Microbiotic soil crusts: a review of their roles in soil and ecological processes in the rangelands of Australia. Australian Journal of Soil Research 32, 389–415.
Crossref | GoogleScholarGoogle Scholar | open url image1

Eldridge DJ, Koen TB (1998) Cover and floristics of microphytic soil crusts in relation to indices of landscape health. Plant Ecology 137, 101–114.
Crossref | GoogleScholarGoogle Scholar | open url image1

Eldridge DJ, Rosentreter R (1999) Morphological groups: a framework for monitoring microphytic crusts in arid landscapes. Journal of Arid Environments 41, 11–25.
Crossref | GoogleScholarGoogle Scholar | open url image1

Eldridge DJ, Tozer ME (1996) Distribution and floristics of bryophytes in soil crusts in semi-arid and arid eastern Australia. Australian Journal of Botany 44, 223–247.
Crossref | GoogleScholarGoogle Scholar | open url image1

Eldridge DJ, Tozer ME (1997) Environmental factors relating to the distribution of terricolous bryophytes and lichens in semi-arid eastern Australia. Bryologist 100, 28–39.
Crossref |
open url image1

Eldridge DJ, Zaady E, Schachak M (2000) Infiltration through three contrasting biological soil crusts in patterned landscapes in the Negev, Israel. CATENA 40, 323–336.
Crossref | GoogleScholarGoogle Scholar | open url image1

Eldridge DJ, Zaady E, Schachak M (2002) Microphytic crusts, shrub patches and water harvesting in the Negev Desert: the Shikim system. Landscape Ecology 17, 587–597.
Crossref | GoogleScholarGoogle Scholar | open url image1

Evans RD, Belnap J (1999) Long-term consequences of disturbance on nitrogen dynamics in an arid ecosystem. Ecology 80, 150–160.
Crossref |
open url image1

Evans RD, Ehleringer JR (1993) A break in the nitrogen cycle in aridlands? Evidence from δ15 N of soils. Oecologia 94, 314–317.
Crossref | GoogleScholarGoogle Scholar | open url image1

Evans RD, Johansen JR (1999) Microbiotic crusts and ecosystem processes. Critical Reviews in Plant Sciences 18, 183–225. open url image1

Gauch HG (1982) ‘Multivariate analysis in community ecology.’ (Cambridge University Press: London)

Gómez-Campo C (1987) ‘Libro Rojo de especies vegetales amenazadas de España Peninsular e Islas Baleares.’ (ICONA: Madrid)

Guerra J, Ros RM, Cano MJ, Casares M (1995) Gypsiferous outcrops in SE Spain, refuges of rare, vulnerable and endangered bryophytes and lichens. Cryptogamie, Bryologie and Lichénology 16, 125–135. open url image1

Hill MO, Gauch HG (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42, 47–58.
Crossref | GoogleScholarGoogle Scholar | open url image1

Johansen JR (1993) Cryptogamic crusts of semiarid and arid lands of North America. Journal of Phycology 29, 140–147.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kleiner EF, Harper KT (1977) Soil properties in relation to cryptogamic groundcover in Canyonlands National Park. Journal of Range Management 30, 202–205. open url image1

Lange OL, Belnap J, Reichenberger H, Meyer A (1997) Photosynthesis of green algal soil crust lichens from arid lands in southern Utah, USA: role of water content on light and temperature response of CO2 exchange. Flora 192, 1–15. open url image1

Lax A, Díaz E, Castillo V, Albadalejo J (1994) Reclamation of physical and chemical properties of a salinized soil by organic amendment. Arid Soil Research and Rehabilitation 8, 9–17. open url image1

Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecological Monographs 69, 1–24.
Crossref |
open url image1

Li XR, Zhou HY, Wang XP, Zhu YG, O’Conner PJ (2003) The effects of sand stabilization and revegetation on cryptogam species diversity and soil fertility in the Tengger Desert, Northern China. Plant and Soil 251, 237–245.
Crossref | GoogleScholarGoogle Scholar | open url image1

Llimona X (1974) ‘Las Communidades de Líquenes de los yesos de España.’ (Universidad de Barcelona, Secretariado de Publicationes: Barcelona)

Maestre FT (2003a) Small-scale spatial patterns of two soil lichens in semi-arid Mediterranean steppe. Lichenologist 35, 71–81.
Crossref |
open url image1

Maestre FT (2003b) Variaciones en el patrón espacial a pequeña escala de los componentes de la costra biológica en un ecosistema mediterráneo semiárido. Revista Chilena de Historia Natural 76, 35–46. open url image1

Maestre FT, Cortina J (2002) Spatial patterns of surface soil properties and vegetation in a Mediterranean semi-arid steppe. Plant and Soil 241, 279–291.
Crossref | GoogleScholarGoogle Scholar | open url image1

Maestre FT, Bautista S, Cortina J (2003) Positive, negative, and net effects in grass-shrub interactions in Mediterranean semiarid grasslands. Ecology 84, 3186–3197. open url image1

Maestre FT, Huesca MT, Zaady E, Bautista S, Cortina J (2002) Infiltration, penetration resistance and microphytic crust composition in contrasted microsites within a Mediterranean semi-arid steppe. Soil Biology & Biochemistry 34, 895–898.
Crossref | GoogleScholarGoogle Scholar | open url image1

Maestre FT, Escudero A, Martínez I, Guerrero C, Rubio A (2005) Does spatial pattern matter to ecosystem functioning? Insights from biological soil crusts. Functional Ecology 19, 566–573.
Crossref | GoogleScholarGoogle Scholar | open url image1

Manly BFJ (1997) ‘Randomisation, Bootstrap and Monte Carlo Methods in Biology.’ 2nd edn. (Chapman and Hall: London)

Martínez-Sánchez JJ, Casares-Porcel M, Guerra J, Gutiérrez-Carretero L, Ros RM, Hernández-Bastida J, Cano MJ (1994) A special habitat for bryophytes and lichens in the arid zones of Spain. Lindbergia 19, 116–121. open url image1

Meyer SE, García-Moya E (1989) Plant community patterns and soil moisture regime in gypsum grasslands of north central Mexico. Journal of Arid Environments 16, 147–155. open url image1

Mickiewicz J (1976) Influence of mineral fertilization on the biomass of moss. Polish Ecological Studies 2, 57–62. open url image1

Mota JF, Sola AJ, Dana ED, Jiménez-Sánchez ML (2003) Plant succession in abandoned gypsum quarries in SE Spain. Phytocoenologia 33, 13–28.
Crossref | GoogleScholarGoogle Scholar | open url image1

Nash TH, White SL, Marsh JE (1977) Lichen and moss distribution and biomass in hot desert ecosystems. The Bryologist 80, 470–479.
Crossref |
open url image1

Nimis PL, Poelt J, Tretiach M (1996) Lichens from the gypsum Park of the northern Apennines (N Italy). Cryptogamie, Bryologie and Lichénology 17, 23–38. open url image1

Porta J (1996) Methodology and study techniques of gypsum in soils, a review. In ‘International symposium of soils with gypsum’. (Ed. RM Poch) pp. 21–33. (Universidad de Lleida: Lleida, Spain)

Prasse R, Bornkamm R (2000) Effect of microbiotic soil surface crusts on emergence of vascular plants. Plant Ecology 150, 65–75.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rogers RW (1972a) Soil surface lichens in arid and subarid south-eastern Australia. I. Introduction and floristics. Australian Journal of Botany 20, 197–213.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rogers RW (1972b) Soil surface lichens in arid and subarid south-eastern Australia. III. The relationship between distribution and environment. Australian Journal of Botany 20, 301–316.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rogers RW, Lange RT (1971) Lichen populations on arid soil crusts around sheep watering places in South Australia. Oikos 22, 93–100. open url image1

Rosentreter R , Belnap J (2001) Biological soil crusts of North America. In ‘Biological soil crusts: structure, function, and management’. (Eds J Belnap, OL Lange) pp. 31–50. (Springer Verlag: Berlin)

Rubio A, Escudero A (2000) Small-scale spatial soil-plant relationship in semi-arid gypsum environments. Plant and Soil 220, 139–150.
Crossref | GoogleScholarGoogle Scholar | open url image1

Shepherd UL, Brantley SL, Tarleton CA (2002) Species richness and abundance patterns of microarthropods on cryptobiotic crusts in a pinon-juniper habitat: a call for greater knowledge. Journal of Arid Environments 52, 349–360.
Crossref | GoogleScholarGoogle Scholar | open url image1

Soil Survey Staff (1990) ‘Keys to soil taxonomy.’ 4th edn. Soil Management Support Services Technical Monograph No. 6. Blacksburg, VA.

St Clair LL, Johansen JR, Rushforth SR (1993) Lichens of soil crust communities in the intermountain area of the Western United States. The Great Basin Naturalist 53, 5–12. open url image1

Tarazona MT, Barreno E, Crespo A, Diaz-Llanos J (1980) Estudio estadístico de la vegetación liquénica de los yesos del centro de España. Anales INIA, Serie Recursos Naturales 4, 139–155. open url image1

Ullmann I , Büdel B (2001) Ecological determinants of species composition of biological soil crusts on a landscape scale. In ‘Biological soil crusts: structure, function, and management’. (Eds J Belnap, OL Lange) pp. 203–213. (Springer Verlag: Berlin)

Verdonschot PFM, ter Braak CJF (1994) An experimental manipulation of oligochaete communities in mesocosms treated with chlorpyrifos or nutrient additions: multivariate analyses with Monte Carlo permutation tests. Hydrobiologia 278, 251–266.
Crossref | GoogleScholarGoogle Scholar | open url image1

Verheye WH, Boyadgiev TG (1997) Evaluating the land use potential of gypsiferous soils from pedogenic characteristics. Soil Use and Management 13, 97–103. open url image1

Virtanen R, Johnston AE, Crawley MJ, Edwards GR (2000) Bryophyte biomass and species richness on the Park Grass Experiment, Rothamsted, UK. Plant Ecology 151, 129–141.
Crossref | GoogleScholarGoogle Scholar | open url image1

West NE (1990) Structure and function of mycrophytic soil crusts in wildland ecosystems of arid to semi-arid regions. Advances in Ecological Research 20, 179–223. open url image1

Zibilske LM (1994) Carbon mineralization. In ‘Methods of soil analysis. Part 2. Microbiological and biochemical properties’. (Eds RW Weaver, S Angle, P Bottomley) pp. 835–863. Soil Science Society of America Book Series. (Soil Science Society of America: Wisconsin)