Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Variations with altitude in reproductive traits and resource allocation of three Tibetan species of Ranunculaceae

Zhao Zhigang A , Du Guozhen A C , Zhou Xianhui A , Wang Mantang A and Ren Qingji B
+ Author Affiliations
- Author Affiliations

A The State Key Laboratory of Arid Agroecology, Lanzhou University, Gansu, Lanzhou 730000, China.

B Grassland Workstation of Autonomous Prefecture of Tibetan of Gannan, Hezuo 747000, China.

C Corresponding author. Email: guozdu@lzu.edu.cn

Australian Journal of Botany 54(7) 691-700 https://doi.org/10.1071/BT05015
Submitted: 10 June 2005  Accepted: 1 May 2006   Published: 19 October 2006

Abstract

We investigated the adaptive response of alpine plants to elevational gradients by examining reproductive traits and resource allocation of three species of Ranunculaceae with contrasting mating systems in alpine and subalpine populations on the eastern QinhaiTibetan Plateu. The results showed that (i) at alpine sites, the self-incompatible Trollius ranunculoides Hemsley tended to become limited by pollination rather than by nutrient availability, although the self-compatible Anemone rivularis var. flore-minore Maxim. Fl. Tang. and A. obtusiloba D.Don. seemed not to be limited by pollen availability; (ii) influences on the reproduction of these three species induced by high altitude were seen in different reproductive characters, and the influences were, to some extent, dependent on the plant. Female investment in the self-compatible A. rivularis and A. obtusiloba was influenced by altitude and plant size; with a much lower carpel number per flower and larger mean seed size in A. rivularis, and a much higher carpel number per flower and smaller mean seed size in A. obtusiloba, at a higher altitude. Floral investment in the self-incompatible T. ranunculoides was also influenced by altitude and plant size, with a smaller single-flower size and larger seed at the higher altitude. Results also showed that (iii) reproductive allocation to flowering and fruiting did not always decrease with altitude as predicted. This may be due to higher nutrient availability in soil at alpine sites. (iv) Although self-pollination may be an assurance mechanism alleviating pollination limitation, changes in allocation pattern, (i.e. the male-biased floral sexual allocation in A. rivularis and the higher allocation to attractive structure in A. obtusiloba) seem to promote pollinator visits at the high altitude.


Acknowledgments

We thank Niu Kechang for help in the field and laboratory, and thank Dr Qing Guanglian for valuable statistical advises. This project was funded by a State key project for natural science foundation (90202009).


References


Ågren J, Willson MF (1992) Determinants of seed production in Geanium maculatum. Oecologia 92, 177–182.
Crossref | GoogleScholarGoogle Scholar | open url image1

Akhalkatsi M, Wagner J (1996) Reproductive phenology and seed development of Gentianella caucasea in different habitats in the Central Caucasus. Flora 191, 161–168. open url image1

Arroyo KMT, Primack R, Armesto JJ (1982) Community studies in pollination ecology in the high temperate Andes of central Chile. 1. Pollination mechanisms and altitudinal variation. American Journal of Botany 69, 82–97.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ashman TL, Knight TM, Steets JA, Amarasekare P, Burd M, Campbell DR, Dudash MR, Johnston MO, Mazer SJ, Mitchell RJ, Morgan MT, Wilson WG (2004) Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85, 2408–2421. open url image1

Bazzaz FA , Grace J (1997) ‘Plant resource allocation.’ (Academic Press: San Diego, CA)

Bingham RA, Orthner AT (1998) Efficient pollination of alpine plants. Nature 391, 238–239.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bliss LC (1962) Adaptations of arctic and alpine plants to environmental conditions. Arctic 15, 117–144. open url image1

Boggs CL (1997) Resource allocation in variable environments: comparing insects and plants. In ‘Plant resource allocation’. (Eds FA Bazzaz, J Grace) pp. 73–89. (Academic Press: San Diego, CA)

Cruden RW (1972) Pollinators at high elevation ecosystems: relative effectiveness of birds and bees. Science 176, 1439–1440.
Crossref | Crossref |
open url image1

De Jong TJ, Klinkhammer PGL (1989) Limiting factors for seed production in Cynoglossum officinale. Oecologia 80, 167–172. open url image1

Du GZ, Wang G (1995) Succession and qualitative change of artificial grassland of Gan Nan sub-alpine meadow. Acta Botanica Sinica 37, 306–313. open url image1

Ellenberg H (1988) ‘Vegetation ecology of Central Europe.’ (Cambridge University Press: Cambridge, UK)

Fabbro T, Körner C (2004) Altitudinal differences in flower traits and reproductive allocation. Flora 199, 70–81. open url image1

Galen C (1985) Regulation of seed-set in Polemonium viscosum: floral scents, pollination, and resources. Ecology 66, 792–797.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gugerli F (1998) Effect of elevation on sexual reproduction in alpine populations of Saxifraga oppositifolia (Saxifragaceae). Oecologia 114, 60–66.
Crossref | GoogleScholarGoogle Scholar | open url image1

Haig D, Westoby M (1988) On limits to seed production. American Naturalist 131, 757–759.
Crossref | GoogleScholarGoogle Scholar | open url image1

Heinrich B (1993) ‘The hot-blooded insects: strategies and mechanisms of thermoregulation.’ (Springer-Verlag: Berlin)

Iwasa Y, Cohen D (1989) Optimal-growth schedule of a perennial plant. American Naturalist 133, 480–505.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kelso S (1992) The genus Primula as a model for evolution in the Alaskan flora. Arctic and Alpine Research 24, 82–87.
Crossref | GoogleScholarGoogle Scholar | open url image1

Klinkhamer PGL , de Jong TJ (1997) Size-dependent allocation to male and female reproduction. In ‘Plant resource allocation’. (Eds FA Bazzaz, J Grace) pp. 211–229. (Academic Press: San Diego, CA)

Kudo G, Molau U (1999) Variations in reproductive traits at inflorescence and flower levels of an arctic legume, Astragalus alpinus L.: comparisons between a sub alpine and an alpine population. Plant Species Biology 14, 181–191.
Crossref | GoogleScholarGoogle Scholar | open url image1

Larson BMH, Barrett SCH (2000) A comparison of pollen limitation in flowering plants. Biological Journal of the Linnean Society 69, 503–520.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lawrence WS (1993) Resource and pollen limitation: plant size-dependent reproductive patterns in Physalis longifolia. American Naturalist 141, 296–313.
Crossref | GoogleScholarGoogle Scholar | open url image1

Méndez M, Traveset A (2003) Sexual allocation in single-flowered hermaphroditic individuals in relation to plant and flower size. Oecologia 137, 69–75.
Crossref | GoogleScholarGoogle Scholar | PubMed | PubMed | open url image1

Mosquin T (1966) Reproductive specialization as a factor in the evolution of the Canadian flora. In ‘The evolution of Canada’s flora’. (Eds RL Taylor, RA Ludwig) pp. 41–63. (University of Toronto Press: Toronto)

Olivieri I, Couvet D, Slatkin M (1994) Allocation of reproductive effort in perennial plants under pollen limitation. American Naturalist 144, 373–394.
Crossref | GoogleScholarGoogle Scholar | open url image1

Samson DA, Werk KS (1986) Size-dependent effects in the analysis of reproductive effort in plants. American Naturalist 127, 667–680.
Crossref | Crossref |
open url image1

Totland Ø (1997) Limitations on reproduction in alpine Ranunculus acris. Canadian Journal of Botany 75, 137–144. open url image1

Totland Ø (2003) Breeding system, insect flower visitation, and floral traits of two Alpine Cerastium species in Norway. Arctic, Antarctic, and Alpine Research 35, 242–247.
Crossref | GoogleScholarGoogle Scholar | open url image1

Totland Ø, Eide W (1999) Environmentally-dependent pollen limitation on seed production in alpine Ranunculus acris. Ecoscience 6, 173–179. open url image1

Totland Ø, Sottocornola M (2001) Pollen limitation of reproductive success in two sympatric Alpine willows (Salicaceae) with contrasting pollination strategies. American Journal of Botany 88, 1011–1015.
PubMed | | PubMed |
open url image1

Winn AA, Gross KL (1993) Latitudinal variation in seed weight and flower number in Prunella vulgaris. Oecologia 93, 55–62. open url image1

Wright SI, Barrett SCH (1999) Size-dependent gender modification in a hermaphroditic perennial herb. Proceedings of the Royal Society of London. Series B. Biological Sciences 266, 225–232.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wu ZY (1980) ‘Vegetation in China.’ (Science Press: Beijing)

Zhao ZG, Du GZ (2003) Mating system characters and the strategies of resource allocation in Ranunculaceae. Journal of Lanzhou University 39, 70–74. open url image1

Zhao ZG, Du GZ, Ren QJ (2004) Size-dependent reproduction and sex allocation in five species of Ranunculaceae. Acta Phytoecologica Sinica 28, 9–16. open url image1

Zimmerman M, Pyke GH (1988) Reproduction in Polemonium: assessing factors limiting seed set. American Naturalist 131, 723–738.
Crossref | GoogleScholarGoogle Scholar | open url image1