Growth and the distribution of phosphorus in wheat developed under various phosphorus and temperature regimes
GD Batten, IF Wardlaw and MJ Aston
Australian Journal of Agricultural Research
37(5) 459 - 469
Published: 1986
Abstract
Experiments were designed to examine the effect of the level and duration of application of phosphorus (P) on yield in wheat and the effect of growth conditions prior to anthesis on the utilisation of P taken up during the early stages of development. In the first experiment, wheat (Triticum aestivum cv. Kite) was grown in sand and supplied with a complete nutrient solution containing either 1 mM phosphate or 0.25 mM phosphate. The supply of P was maintained until grain maturity, or stopped at different stages of development (floral initiation, flag leaf emergence, anthesis). The increase in total plant dry matter over this period ranged from 8.8 to 17.6 g/plant, with the 1.0 mM P supply and from 4.1 to 9.5 g/plant with the 0.25 mM P supply. Supply of P beyond anthesis resulted in more tiller dry matter and increased the P content of the grain, but did not increase grain yield at either level. With 1 mM P to maturity, up to 21% P of the grain P could be attributed to retranslocation of P within the plant after anthesis. With 0.25 mM P to floral initiation, 58% of the grain P could be attributed to such retranslocation. In a second experiment plants (cv. Kite) were grown initially at 18/13¦C with 0.25 mM P until floral initiation and thereafter with a P-free solution until maturity. Between floral initiation and anthesis plants were placed in six dayhight temperatures, extending (in 3¦C steps) from 15/10¦C to 30/25OC, and then returned to the standard condition of 18/13¦C. Higher pre-anthesis temperatures reduced the pre-anthesis growth period and the plant height, but increased the leaf phosphorus concentration and uptake of phosphorus per plant in both the pre- and post-anthesis periods. Net CO2 exchange indicated that leaf senescence in P-deficient plants was closely associated with the export of nitrogen as well as the export of P. Grain P increased from 0.15% to 0.3% when the preanthesis temperature was increased from 15/10 to 30/25¦C, although grain yield per main culm did not vary greatly. These findings highlight the importance of environmental conditions in determining the level of P deficiency in wheat, and show that grain yield is not limited by the amount of P in the grain.https://doi.org/10.1071/AR9860459
© CSIRO 1986