Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

RAMP based fingerprinting and assessment of relationships among Australian narrow-leafed lupin (Lupinus angustifolius L.) cultivars

H. Yuan A , G. Yan B E , K. H. M. Siddique C and H. Yang C D
+ Author Affiliations
- Author Affiliations

A Department of Biotechnology, Zhanjiang Ocean University, Guangdong, Zhanjiang, 524088, China.

B School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

C Centre for Legumes in Mediterranean Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

D Department of Agriculture Western Australia, 3 Baron-Hay Court, South Perth, WA 6151, Australia.

E Corresponding author. Email: gyan@plants.uwa.edu.au

Australian Journal of Agricultural Research 56(12) 1339-1346 https://doi.org/10.1071/AR05188
Submitted: 30 May 2005  Accepted: 12 August 2005   Published: 15 December 2005

Abstract

Narrow-leafed lupin is a major winter grain legume crop in the Australian farming system and a number of commercial cultivars are currently available to growers. A significant level of polymorphism was detected in narrow-leafed lupin cultivars by the randomly amplified microsatellite polymorphism (RAMP) approach, suggesting that cultivars harbour considerable DNA variation. Seventy-seven cultivar-specific markers were found among the 23 lupin cultivars examined and a dichotomous fingerprinting key was developed for the molecular identification of lupin cultivars. Cluster analysis of pairwise distance matrix computed from RAMP profiles grouped the 23 cultivars into 4–5 clusters, which generally agreed with their pedigree relationships.

Additional keywords: RAMP, lupin cultivars, dichotomous molecular identification key.


Acknowledgments

H. Yuan acknowledges the financial support by CLIMA and the School of Plant Biology during her visit to Western Australia in 2004/2005.


References


Astarini IA, Plummer JA, Lancaster RA, Yan G (2004) Fingerprinting of cauliflower cultivars using RAPD markers. Australian Journal of Agricultural Research 55, 117–124.
Crossref | GoogleScholarGoogle Scholar | open url image1

Chin ECL, Senior ML, Smith JSC (1996) Maize simple repetitive DNA sequences: abundance and allele variation. Genome 39, 866–873.
PubMed |
open url image1

Cowling WA, Huyghe C, Swiecicki W (1998) Lupin breeding. ‘Lupins as crop plants: biology, production and utilization’. (Eds JS Gladstones, CA Atkins, J Hamblin) pp. 93–120. (CAB International: London)

Davila JA, Loarce Y, Ferrer E (1999) Molecular characterization and genetic mapping of random amplified microsatellite polymorphism in barley. Theoretical and Applied Genetics 98, 265–273.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gladstones JS (1994) A historical view of lupins in Australia. ‘Proceedings of the First Australian Lupin Technical Symposium’. (Ed.  M Dracup , J Palta ) pp. 1–38. (Department of Agriculture Western Australia: Perth, W. Aust.)


Pharmawati M, Yan G, Finnegan PM (2005) Molecular variation and fingerprinting of Leucadendron cultivars (Proteaceae) by ISSR markers. Annals of Botany 95, 1163–1170.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Pradhan A, Yan G, Plummer JA (2004) Development of DNA fingerprinting keys for the identification of radish cultivars. Australian Journal of Experimental Agriculture 44, 95–102.
Crossref | GoogleScholarGoogle Scholar | open url image1

Raeder U, Broda P (1985) Rapid preparation of DNA from filamentous fungi. Letters in Applied Microbiology 1, 17–20. open url image1

Shan F, Clarke H, Yan G, Plummer JA, Siddique KHM (2004) Development of DNA fingerprinting keys for discrimination of Cicer echinospermum (P.H. Davis) accessions using AFLP markers. Australian Journal of Agricultural Research 55, 947–952.
Crossref | GoogleScholarGoogle Scholar | open url image1

Siddique KHM, Sykes J (1997) Pulse production in Australia past, present and future. Australian Journal of Experimental Agriculture 37, 103–111.
Crossref | GoogleScholarGoogle Scholar | open url image1

Swofford DL (1998) PAUP: Phylogenetic analysis using parsimony, version 4. 0b2. Computer program distributed by the Illinois Natural History Survey, Champaign, IL.

Taramino G, Tingey S (1996) Simple sequence repeats for germplasm analysis and mapping in maize. Genome 39, 277–287.
PubMed |
open url image1

Wu K, Jones R, Danneberger L, Scolnik PA (1994) Detection of microsatellite polymorphisms without cloning. Nucleic Acids Research 22, 3257–3258.
PubMed |
open url image1

Yang H, Boersma JG, You M, Buirchell BJ, Sweetingham MW (2004) Development and implementation of a sequence-specific PCR marker linked to a gene conferring resistance to anthracnose disease in narrow-leafed lupin (Lupinus angustifolius L.). Molecular Breeding 14, 145–151.
Crossref | GoogleScholarGoogle Scholar | open url image1

Yang H, Shankar M, Buirchell BJ, Sweetingham MW, Caminero C, Smith PMC (2002) Development of molecular markers using MFLP linked to a gene conferring resistance to Diaporthe toxica in narrow-leafed lupin (Lupinus angustifolius L.). Theoretical and Applied Genetics 105, 265–270.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Yang H, Sweetingham MW, Cowling WA, Smith PMC (2001) DNA fingerprinting based on microsatellite-anchored fragment length polymorphisms, and isolation of sequence-specific PCR markers in lupin (Lupinus angustifolius L.). Molecular Breeding 7, 203–209.
Crossref | GoogleScholarGoogle Scholar | open url image1

You M, Boersma JG, Buirchell BJ, Sweetingham MW, Siddique KHM, Yang H (2005) A PCR-based molecular marker applicable for marker-assisted selection for anthracnose disease resistance in lupin breeding. Cellular and Molecular Biology Letters 10, 123–134.
PubMed |
open url image1

Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20, 176–183.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1