Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

AFLP and SSR analysis of genetic diversity among landraces of bread wheat (Triticum aestivum L. em. Thell) from different geographic regions

B. J. Stodart A , M. Mackay B and H. Raman A C
+ Author Affiliations
- Author Affiliations

A NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW 2650, Australia.

B Australian Winter Cereals Collection, Tamworth Agricultural Institute, Tamworth, NSW 2340, Australia.

C Corresponding author. Email: harsh.raman@agric.nsw.gov.au

Australian Journal of Agricultural Research 56(7) 691-697 https://doi.org/10.1071/AR05015
Submitted: 18 January 2005  Accepted: 26 April 2005   Published: 22 July 2005

Abstract

A set of 44 bread wheat landraces was used to determine the efficacy of 16 amplifed fragment length polymorphism (AFLP) primers and 63 wheat simple sequence repeat (SSR) markers in identifying polymorphisms between accessions. The SSR markers detected approximately 10 alleles per locus with a mean gene diversity (Hz) of 0.63, whereas AFLP primers identified approximately 147 fragments per primer with a mean gene diversity of 0.25. A set of 54 SSR markers and 11 AFLP primers was identified as highly polymorphic (polymorphic information content (PIC) ≥ 0.5 and 0.3 for SSR and AFLP, respectively), and suitable for molecular characterisation of germplasm. Principle coordinate analysis suggested that the AFLP and SSR loci could be used to discriminate among accessions collected from North Africa and southern Europe from those collected from the Middle East. Both marker types indicate that accessions from North Africa and southern Europe, the Middle East, and southern and eastern Asia are genetically diverse. The results indicate the usefulness of the molecular markers to assess genetic diversity present within germplasm collections.

Additional keywords: molecular diversity, principal coordinates analysis.


Acknowledgments

The authors acknowledge the financial support given under the Preservation of Biological Assets program by the BioFirst initiative of the New South Wales Government, Australia.


References


Ahmad M (2002) Assessment of genomic diversity among wheat genotypes as determined by simple sequence repeats. Genome 45, 646–651.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bandopadhyay R, Sharma S, Rustgi S, Singh R, Kumar A, Balyan HS, Gupta PK (2004) DNA polymorphism among 18 species of Triticum–Aegilops complex, using wheat EST-SSRs. Plant Science 166, 349–356.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bernatchez L, Duchesne P (2000) Individual-based genotype analysis in studies of parentage and population assignment, how many loci, how many alleles? Canadian Journal of Fisheries and Aquatic Sciences 57, 1–12.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bertin P, Grégoire D, Massart S, de Froidmont D (2001) Genetic diversity among European cultivated spelt revealed by microsatellites. Theoretical and Applied Genetics 102, 148–156.
Crossref | GoogleScholarGoogle Scholar | open url image1

Brown AHD (1978) Isozymes, plant population genetic structure and genetic conservation. Theoretical and Applied Genetics 52, 145–157.
Crossref | GoogleScholarGoogle Scholar | open url image1

Burr B, Evola SV, Burr FA, Beckmann JS (1983) The application of restriction fragment length polymorphisms to plant breeding. ‘Genetic engineering, principles and methods’. (Eds SK Setlow, A Hollaender) pp. 45–59. (Plenum Press: New York)

Caballero L, Martin LM, Alvarez JB (2004) Variation and genetic diversity for gliadins in Spanish spelt wheat accessions. Genetic Resources and Crop Evolution 51, 679–686.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cornuet JM, Aulagnier S, Lek S, Franck P, Solignac M (1999) New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153, 1989–2000.
PubMed |
open url image1

Culp TW (1998) Public breeding in the southeast. ‘Proceedings Beltwide Cotton Conference’. (National Cotton Council of America: Memphis, TN)


Van Cutsem P, du Jardin P, Boutte C, Beauwens T, Jacqmin S, Vekemans X (2003) Distinction between cultivated and wild chicory gene pools using AFLP markers. Theoretical and Applied Genetics 107, 713–718.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

DeLacy IH, Skovmand B, Huerta J (2000) Characterization of Mexican wheat landraces using agronomically useful attributes. Genetic Resources and Crop Evolution 47, 591–602.
Crossref | GoogleScholarGoogle Scholar | open url image1

Doebley JF (1989) Isozymic evidence and the evolution of crop plants. ‘Isozymes in plant biology’. (Eds DE Soltis, PS Soltis) pp. 165–191. (Dioscorides: Portland, OR)

Eujayl I, Sorrells M, Baum M, Wolters P, Powell W (2001) Assessment of genotypic variation among cultivated durum wheat based on EST-SSRs and genomic SSRs. Euphytica 119, 39–43.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gao LF, Jing RL, Huo NX, Li Y, Li XP, Zhou RH, Chang XP, Tang JF, Ma JY, Jia JZ (2004) One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat. Theoretical and Applied Genetics 108, 1392–1400.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Garvin DF, Brown AHD, Burdon JJ (1997) Inheritance and chromosomal location of scald resistance genes derived from Iranian and Turkish wild barleys. Theoretical and Applied Genetics 94, 1086–1091.
Crossref | GoogleScholarGoogle Scholar | open url image1

Guadagnuolo R, Savova Bianchi D, Felber F (2001) Specific genetic markers for wheat, spelt, and four wild relatives, comparison of isozymes, RAPDs, and wheat microsatellites. Genome 44, 610–621.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Guidet F, Rogowsky P, Taylor C, Weining S, Langridge P (1991) Cloning and characterization of a new rye-specific repeated sequence. Genome 34, 81–87. open url image1

Gupta PK, Balyan HS, Edwards KJ, Isaac P, Korzun V , et al. (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theoretical and Applied Genetics 105, 413–422.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Molecular Genetics and Genomics 270, 315–323.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Gupta PK, Varshney RK, Sharma PC, Ramesh B (1999) Molecular markers and their applications in wheat breeding. Plant Breeding 118, 369–390.
Crossref | GoogleScholarGoogle Scholar | open url image1

Heun M, Schäfer-Pregl R, Klawan D, Castagna R, Accerbi M, Borghi B, Salamini F (1997) Site of Einkorn wheat domestication identified by DNA fingerprinting. Science 278, 1312–1314.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays, a solid state technology for sequence information independent genotyping. Nucleic Acids Research 29, e25– .
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Jarraud S, Mougel C, Thioulouse J, Lina G, Meugnier H, Forey F, Nesme X, Etienne J, Vandenesch F (2002) Relationships between Staphylococcus aureus genetic background, virulence factors, agr type (alleles) and human disease type. Infection and Immunity 70, 631–641.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Langridge P, Lagudah ES, Holton TA, Appels R, Sharp PJ, Chalmers KJ (2001) Trends in genetic and genome analysis in wheat – a review. Australian Journal of Agricultural Research 52, 1043–1077.
Crossref | GoogleScholarGoogle Scholar | open url image1

Leigh F, Lea V, Law J, Wolters P, Powell W, Donini P (2003) Assessment of EST- and genomic microsatellite markers for variety discrimination and genetic diversity studies in wheat. Euphytica 133, 359–366.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lubbers EL, Gill KS, Cox TS, Gill BS (1991) Variation of molecular markers among geographically diverse accessions of Triticum tauschii.  Genome 34, 354–361. open url image1

Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Molecular Ecology 3, 91–99.
PubMed |
open url image1

Manifesto MM, Schlatter AR, Hopp HE, Suárez HE, Dubcovsky J (2001) Quantitative evaluation of genetic diversity in wheat germplasm using molecular markers. Crop Science 41, 682–690. open url image1

Nei, M (1987). ‘Molecular evolutionary genetics.’ pp. 512. (Columbia University Press: New York)

Neigel JE (1997) A comparison of alternative strategies for estimating gene flow from genetic markers. Annual Review of Ecology and Systematics 28, 105–128.
Crossref | GoogleScholarGoogle Scholar | open url image1

Park SDE (2001) Trypanotolerance in West African cattle and the population genetic effects of selection. PhD thesis (University of Dublin: )

Paull JG, Chalmers KJ, Karakousis A, Kretschmer JM, Manning S, Langridge P (1998) Genetic diversity in Australian wheat varieties and breeding material based on RFLP data. Theoretical and Applied Genetics 96, 435–446.
Crossref | GoogleScholarGoogle Scholar | open url image1

Peakall, R ,  and  Smouse, PE (2001). ‘GenAlEx V5, genetic analysis in Excel. Population genetic software for teaching and research.’ (Australian National University: Canberra, ACT (Available at:) http://www.anu.edu.au/BoZo/GenAlEx/

Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theoretical and Applied Genetics 91, 1001–1007.
Crossref | GoogleScholarGoogle Scholar | open url image1

Raman H, Karakousis A, Moroni JS, Raman R, Read B, Garvin DF, Kochian LV, Sorrells ME (2003) Development and allele diversity of microsatellite markers linked to the aluminium tolerance gene Alp in barley. Australian Journal of Agricultural Research 54, 1315–1321.
Crossref | GoogleScholarGoogle Scholar | open url image1

Raman R, Raman H, Johnstone K, Lisle C, Smith A, Martin P, Allen H (2005) Genetic and in silico mapping of the polyphenol oxidase gene in bread wheat (Triticum aestivum L.). Functional and Integrative Genomics. ,
Crossref | GoogleScholarGoogle Scholar | open url image1

De Riek J, Calsyn E, Everaert I, Van Bockstaele E, De Loose M (2001) AFLP based alternatives for the assessment of distinctness, uniformity and stability of sugarbeet varieties. Theoretical and Applied Genetics 103, 1245–1265. open url image1

Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149, 2001–2023. open url image1

Röder MS, Plaschke J, König SU, Börner A, Sorrells ME, Tanksley SD, Ganal MW (1995) Abundance, variability and chromosomal location of microsatellites in wheat. Molecular and General Genetics 246, 327–333.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Röder MS, Wendehake K, Korzum V, Bredemeijer G, Laborie D , et al. (2002) Construction and analysis of a microsatellite-based database of European wheat varieties. Theoretical and Applied Genetics 106, 67–73.
PubMed |
open url image1

Roussel V, Koenig J, Beckert M, Balfourier F (2004) Molecular diversity in French bread wheat accessions related to temporal trends and breeding programmes. Theoretical and Applied Genetics 108, 920–930.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Soleimani VD, Baum BR, Johnson DA (2002) AFLP and pedigree-based genetic diversity estimates in modern cultivars of durum wheat (Triticum turgidum L. subsp. durum (Desf.) Husn.). Theoretical and Applied Genetics 104, 350–357.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Vekemans, X (2002). ‘AFLP-SURV version 1.0.’ Distributed by the author. (Laboratoire de Génétique et Ecologie Végétale, Université Libre de Bruxelles Belgium (Available at: http//www.ulb.ac.be/sciences/lagev

Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T , et al. (1995) AFLP, a new technique for DNA fingerprinting. Nucleic Acids Research 23, 4407–4414.
PubMed |
open url image1

Wenguang C, Hucl P, Scoles G, Chibbar RN (1998) Genetic diversity within spelta and macha wheats based on RAPD analysis. Euphytica 104, 181–189.
Crossref | GoogleScholarGoogle Scholar | open url image1

Van der Wurff AWG, Isaaks JA, Ernsting G, Van Straalen NM (2003) Population substructures in the soil invertebrate Orchesella cincta, as revealed by microsatellite and TE-AFLP markers. Molecular Ecology 12, 1349–1359.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1