Seasonal variation of carbon assimilation in mango (cv. Kensington Pride): effect of flowering treatments
Australian Journal of Agricultural Research
54(3) 309 - 321
Published: 24 March 2003
Abstract
In the tropics of northern Australia the mango cultivar Kensington Pride exhibits erratic flowering and fruiting and low productivity. Two treatments to manipulate flowering were applied. The first, mango flowering treatment (MFT), involved cutting a cincture through the bark around the circumference of the tree trunk and tying into the cincture a length of twine soaked in a solution of morphactin, CF125. The second involved applying paclobutrazol (PBZ) as a soil drench around the trunk of the tree. Phenology, leaf gas exchange, and fruit yield were assessed over 2 seasons in 3 separate groups of trees in commercial orchards near Darwin.Both MFT and PBZ supported earlier and/or more intense flowering in the season of application than did control trees. The PBZ was re-applied annually and the beneficial effect on flowering occurred in successive years. The MFT was applied once only at the start of the experiment and the effect of MFT was not evident in the second season.
The effect of MFT on gas exchange was characterised by a severe reduction in net carbon assimilation (Amax), stomatal conductance (gs), and transpiration (E) for up to 4 months following treatment. Trees receiving PBZ generally had higher rates of leaf gas exchange than MFT trees but similar to control trees. During the dry season, leaves of MFT, control, and PBZ trees had similar rates of Amax. In the year of application, chlorophyll content of MFT trees was lower than that of the other treatments, but in the second year it was very similar to control trees. PBZ trees had the highest chlorophyll content during the study. Commercial fruit yield of PBZ-treated trees was 2–3 times higher than that of control or MFT trees. Independent of the flowering treatments, Amax followed a seasonal trend with an average rate of 9.05 μmol/m2.s (min. 4.42, max. 13.2) during the wet season (January–April), and 4.2 μmol/m2.s (min. 1.11, max. 8.7) during the dry season (May–October). Regression analysis demonstrated that 82% of the variation in gs and 76% of the variation in Amax could be explained by the effect of vapour pressure deficit of the leaf (VPDL) in field-grown mango trees.
Keywords: morphactin, paclobutrazol,
https://doi.org/10.1071/AR02139
© CSIRO 2003