Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

The effect of magnesium oxide supplementation on muscle glycogen metabolism before and after exercise and at slaughter in sheep

G. E. Gardner, R. H. Jacob and D. W. Pethick

Australian Journal of Agricultural Research 52(7) 723 - 729
Published: 2001

Abstract

This study was a series of experiments designed to test the influence of supplemental magnesium oxide (MgO) on muscle glycogen concentration in sheep exposed to stress (exercise) and the commercial slaughter process, and to test the effectiveness of this supplement in the commercial scenario.

In Expt 1, Merino wethers maintained on a mixed ration (metabolisable energy 11 MJ/kg and crude protein 16.3% in DM) were supplemented with MgO at the rate of 0%, 0.5%, or 1% of their ration for 10 days prior to a single bout of exercise and for 10 days prior to slaughter at a commercial abattoir. The exercise regimen consisted of 4 intervals of 15 min, with muscle biopsies taken by biopsy drill from the m. semimembranosis (SM) and m. semitendinosis (ST) pre-exercise and immediately post-exercise, and at 36 and 72 h post-exercise. Muscle biopsies were also taken 1 week prior to slaughter from the SM and ST, with further samples taken approximately 30 min post-slaughter. Ultimate pH (pHu) of the SM, ST, and m. longissimus dorsi (LD) was measured 48 h after slaughter. Sheep supplemented with MgO lost less muscle glycogen in the ST during exercise, and repleted more muscle glycogen in the SM during the post-exercise repletion phase, than unsupplemented sheep. The supplemented animals also had higher muscle glycogen concentrations in the ST at slaughter.

In Expt 2, MgO was administered to Merino wether lambs for 4 days prior to slaughter in the form of a water-borne slurry at a rate equivalent to 1% of their ration. This treatment resulted in significantly reduced muscle glycogen concentrations in both the SM and ST at slaughter.

In Expts 3–5, MgO was used as an ‘in-feed’ supplement in the commercial scenario. In each case, slaughter-weight Merino lambs were supplemented with MgO at the rate of 1% of their ration for 4 days prior to commercial slaughter. Positive responses were seen in 2 of the 3 experiments, with increased glycogen concentrations and a reduced pHu. The animals that demonstrated no response to MgO had the lowest pHu after slaughter, suggesting a minimal stress load, thus providing very little scope for an effect of the MgO supplement.

We conclude that MgO can reduce the effects of exercise, leading to a subsequent reduction in glycogen loss, and an increase in the rate of glycogen repletion in skeletal muscle following exercise. The results support MgO supplementation as a viable option for reducing the stress associated with commercial slaughter.

Keywords: dark cutting, sheep, stress, magnesium, glycogen.

https://doi.org/10.1071/AR00128

© CSIRO 2001

Committee on Publication Ethics


Export Citation Get Permission

View Dimensions