Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Effects of grazing on plant and soil nitrogen relations of pasture-crop rotations

Murray Unkovich, Paul Sanford, John Pate and Mike Hyder

Australian Journal of Agricultural Research 49(3) 475 - 486
Published: 1998

Abstract

Plant and soil nitrogen (N) fluxes were assessed in subterranean clover (Trifolium subterraneum L.) based pastures set-stocked at 8 sheep per hectare (light grazing) or grazed at a much higher, but variable, intensity to maintain 1400 kg standing dry matter per hectare (intensive grazing) through the addition or removal of sheep. Pasture composition and biomass production, herbage N concentration, plant nitrate (NO-3) utilisation, and N2 fixation by clover were assessed at 3-weekly intervals over the growing season. Soil ammonium (NH+4) and NO-3 availability were assessed at similar intervals using soil coring and in situ incubation cores. Seasonal pasture yield under light grazing was 11·5 t dry matter/ha compared with 7·9 t/ha under intensive grazing, the difference being mostly attributable to reduced grass growth under intensive grazing. However, there was essentially no difference between the pastures in total N accumulation (300 kg N/ha in the lightly grazed and 302 kg N/ha in the intensively grazed pastures). The lesser dry matter production under intensive grazing was compensated for by higher N concentration and increased clover content of the sward, and faster clover growth late in the growing season. N2 fixation by clover under intensive grazing (153 kg N/ha) was slightly greater than under light grazing (131 kg N/ha). Proportional dependence of clover on N2 fixation (%Ndfa) was similar under intensive grazing (78%) and light grazing (84%), despite higher continued availability of soil mineral N under intensive grazing. Uptake of soil N by the grass component amounted to 147 kg N/ha under light grazing v. 96 kg N/ha in the intensively grazed pasture, and for the clover was 18 and 40 kg N/ha, respectively. Capeweed (Arctotheca calendula L.), a common weed of south-west Australian pastures, was extraordinarily active in absorbing, storing, and reducing soil NO-3, especially when subjected to intensive grazing. After the 3 years of the grazing trial, the pastures were cultivated and cropped to oats, triticale, and canola and the biomass and N uptake of each crop assessed. Intensive grazing in the previous pasture resulted in increased availability of soil mineral N in the subsequent cropping phase and accordingly augmented crop N uptake and eventual grain protein levels relative to crops following lightly grazed pasture. The study indicated that intensive grazing before cropping may offer a useful management tool for improving N nutrition and yields of non-leguminous crops in pasture-crop rotations under the conditions prevailing in the south-west of Australia.

Keywords: nitrogen fixation, grazing intensity, subterranean clover, nitrate, ammonium, grain protein

https://doi.org/10.1071/A97071

© CSIRO 1998

Committee on Publication Ethics


Export Citation Get Permission

View Dimensions