Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

A comparison of chickpeas and pasture legumes for sustaining yields and nitrogen status of subsequent wheat

I. C. R. Holford and G. J. Crocker

Australian Journal of Agricultural Research 48(3) 305 - 316
Published: 1997

Abstract

Six treatments were compared for their effects on wheat yields, nitrogen (N) uptake, protein content, and fertiliser N requirements in a long-term rotation study on a black earth and a red clay in northern New South Wales. Three of the treatments were lucerne, subterranean clover, and snail medic, all grown simultaneously from 1988 to 1990 and all followed by 3 years of wheat. The other 3 treatments were biennial rotations of chickpea–wheat and long-fallow–wheat as well as a continuous wheat monoculture, all lasting 6 years.

With the exception of the first wheat crop, which experienced very low growing-season rainfall, lucerne was more beneficial than other legumes to following wheat crops in terms of yield, protein content, and fertiliser N requirement. Clover closely followed lucerne in the magnitude of its positive effects, whereas medic and chickpea produced much smaller effects. Because of the amount of N removed in the chickpea grain, it appeared that the small positive effects of chickpea were due to soil N sparing or rapid mineralisation from crop residues rather than any net contribution of N fixation to soil N accretion.

Average yields of the 3 wheat crops following lucerne and clover were much higher than average yields 20 years previously following lucerne, even though average yields of continuously grown wheat have declined over the past 20 years. However, lucerne eliminated the need for N fertiliser for no more than 2 following wheat crops, and clover for only the first wheat crop. It appears that the longer duration of lucerne benefits reported in earlier studies was due to the higher background soil N levels as well as the lower yield potential in the earlier years. Nevertheless, lucerne lowered the fertiliser requirement of the third wheat crop by more than 50%. In contrast to lucerne, annual legumes are probably most beneficial if grown in alternate years with wheat.

The large benefits of long fallowing particularly on the black earth were apparently caused by its enhancement of soil moisture and mineral N accumulation. However, these N effects were surprisingly large considering the degree of depletion of organic matter in long-fallowed soils.

Keywords: fallowing, lucerne, nitrogen, protein, rotations, snail medic, subterranean clover, sustainability.

https://doi.org/10.1071/A96072

© CSIRO 1997

Committee on Publication Ethics


Export Citation Get Permission

View Dimensions