Effect of glycerin supplementation on the expression of antioxidant and mitochondrial genes in broilers
R. S. Araújo A , K. R. S. Sousa B E , F. C. B. Sousa A , A. C. Oliveira A , L. R. B. Dourado A , S. E. F. Guimarães C , W. Silva C , D. Biagiotti A , G. F. V. Bayão D and A. C. Araujo AA Department of Animal Science, Universidade Federal do Piauí, Campus Profa Cinobelina Elvas, 64900-000, Bom Jesus, PI, Brazil.
B Department of Animal Science, Universidade Federal do Maranhão, 65500-000, Chapadinha, MA, Brazil.
C Department of Animal Science, Animal Biotechnology Laboratory, Universidade Federal de Viçosa, 36900-000 Viçosa, MG, Brazil.
D Department of Animal Science, Instituto Federal de Educação, Ciência e Tecnologia do Amapá, 68997-000, Porto Grande, AP, Brazil.
E Corresponding author. Email: katiregia@gmail.com
Animal Production Science 59(3) 408-415 https://doi.org/10.1071/AN16391
Submitted: 16 June 2016 Accepted: 13 December 2017 Published: 16 March 2018
Abstract
Crude glycerin has been used as an alternative energy source in animal feeding and can thus change both the animal’s performance and the levels of gene expression related to energy production process and the antioxidant system, since the effect of glycerin depends on its degree of purity in the diet. The aim of this study was to evaluate the effect of crude glycerin inclusion (0, 6 and 12%) in the diet has on performance characteristics and mRNA abundance of genes associated with the mitochondrial function (uncoupling protein (UCP), cytochrome C oxidase subunit III (COX III) and adenine nucleotide transporter (ANT)) and those that combat the reactive oxygen species (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)) in the liver and muscle of broilers at 42 days of age. Total RNA was extracted from the tissues, and cDNA was amplified using specific primers for the genes under study through real-time reverse transcription polymerase chain reaction; the endogenous gene used was β-actin. There was no difference between glycerin concentrations for weight gain, feed intake or feed conversion. Greater expression of UCP at muscle and higher GPx expression at liver were observed in broilers fed 12% glycerin. In conclusion, the addition of 12% glycerin to broiler diets increased the expression of UCP and GPx, but did not change broiler performance. Therefore, glycerin can be used as an alternative ingredient without losses.
Additional keywords: alternative feedstuffs, functional genomics, poultry nutrition, ROS.
References
Akbarian A, Michiels J, Golian A, Buyse J, Wang Y, De Smet S (2014) Gene expression of heat shock protein 70 and antioxidant enzymes, oxidative status, and meat oxidative stability of cyclically heat-challenged finishing broilers fed Origanum compactum and Curcuma xanthorrhiza essential oils. Poultry Science 93, 1930–1941.| Gene expression of heat shock protein 70 and antioxidant enzymes, oxidative status, and meat oxidative stability of cyclically heat-challenged finishing broilers fed Origanum compactum and Curcuma xanthorrhiza essential oils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlaks7jK&md5=c8fe86b5a3c5bea4361c6be2d5a15447CAS |
Alberto EE, Nascimento V, Braga AL (2010) Catalytic application of selenium and tellurium compounds as glutathione peroxidase enzyme mimetics. Journal Brazilian of Chemics 21, 2032–2041.
| Catalytic application of selenium and tellurium compounds as glutathione peroxidase enzyme mimetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXis1SntA%3D%3D&md5=55aea6ae23ccc2049ee2d1c3e0b6ebb6CAS |
Barbosa KB, Costa NM, Alfenas RC, Paula SG, Minim VL, Bressan J (2010) Estresse oxidativo: conceito, implicações e fatores modulatórios. Revista de Nutrição 23, 629–643.
| Estresse oxidativo: conceito, implicações e fatores modulatórios.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFanurk%3D&md5=7836aa2ab4d0951ee92dea30e8b4d460CAS |
Bottje WG, Carstens GE (2009) Association of mitochondrial function and feed efficiency in poultry and livestock species. Journal of Animal Science 87, E48–63.
| Association of mitochondrial function and feed efficiency in poultry and livestock species.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M3mtVWksQ%3D%3D&md5=c329dc4be4ca2fe05c5a958b36622608CAS |
Bottje WG, Tang ZX, Iqbal M, Cawthon D, Okimoto R, Wing T, Cooper M (2002) Association of mitochondrial function with feed efficiency within a single genetic line of male broilers. Poultry Science 81, 546–555.
| Association of mitochondrial function with feed efficiency within a single genetic line of male broilers.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD383ltVyqsw%3D%3D&md5=880844d02b836ec5be6f2605dbbfa15bCAS |
Brand MD, Chien LF, Ainscow EK, Rolfe DF, Porter RK (1994) The causes and function of mitochondrial proton leak. Biochimica et Biophysica Acta 1187, 132–139.
| The causes and function of mitochondrial proton leak.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmslCmsb0%3D&md5=72cc8cfd6445c6c65c09b4a4043f8a38CAS |
Cerrate S, Yan F, Wang Z, Coto C, Sacakli P, Waldroup PW (2006) Evaluation of glycerine from biodiesel production as a feed ingredient for broilers. Poultry Science 5, 1001–1007.
| Evaluation of glycerine from biodiesel production as a feed ingredient for broilers.Crossref | GoogleScholarGoogle Scholar |
Del Vesco AP, Gasparino E, Neto AR, Rossi RM, Soares MA, Silva SC (2013) Effect of methionine supplementation on mitochondrial genes expression in the breast muscle and liver of broilers. Livestock Science 151, 284–291.
| Effect of methionine supplementation on mitochondrial genes expression in the breast muscle and liver of broilers.Crossref | GoogleScholarGoogle Scholar |
Dridi S, Decuypere E, Buyse J (2013) Cerulenin upregulates heat shock protein-70 gene expression in chicken muscle. Poultry Science 92, 2745–2753.
| Cerulenin upregulates heat shock protein-70 gene expression in chicken muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1CktrjL&md5=4cf0e7ca88d70d178757a2e1725e1de7CAS |
Dröge W (2002) Free radicals on physiological control of cell function. Physiological Reviews 82, 47–95.
| Free radicals on physiological control of cell function.Crossref | GoogleScholarGoogle Scholar |
EFSA Panel on Contaminants in the Food Chain (CONTAM) (2010) Scientific opinion on the abiotic risks for public and animal health of glycerine as co-product from the biodiesel production from Category 1 animal by-products (ABP) and vegetable oils. European Food Safety Authority EFSA Journal 8, 1934
Fellenberg MA, Speisky H (2006) Antioxidants: their effects on broiler oxidative stress and its meat oxidative stability. World’s Poultry Science Journal 62, 53–70.
| Antioxidants: their effects on broiler oxidative stress and its meat oxidative stability.Crossref | GoogleScholarGoogle Scholar |
Fiore C, Trezeguet V, Le Saux A, Roux P, Schwimmer C, Dianoux AC, Noel F, Lauquim GJ, Vignais PV (1998) The mitochondrial ADP/ATP carrier: structural, physiological and pathological aspects. Biochimie 80, 137–150.
| The mitochondrial ADP/ATP carrier: structural, physiological and pathological aspects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivV2it7c%3D&md5=54f2c6ff61993e6f42b0a7da86314678CAS |
Gasparino E, Del Vesco AP, Guimarães SE, Silva SC, Marcato SM, Neto AR, Sousa KR (2012) Age-related changes in mitochondrial UCP, ANT and COX III gene expression in the breast muscle of quails (Coturnix coturnix japonica). Genetics and Molecular Research 11, 1981–1989.
| Age-related changes in mitochondrial UCP, ANT and COX III gene expression in the breast muscle of quails (Coturnix coturnix japonica).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOlt7fL&md5=5a27b8e5516bcd8bcc8bcd8de805655cCAS |
Gasparino E, Voltolini DM, Del Vesco AP, Marcato SM, Zancanela V, Grieser DO, Khatlab AS, Guimarães SE, Neto AR (2014) Thermal stress induces changes in gene expression and blood parameters in high and low feed efficiency meat quail. Animal Genetics 56, 253–260.
Jung B, Batal B (2011) Nutritional and feeding value of crude glycerin for poultry. 1. Nutritional value of crude glycerin. Journal of Applied Poultry Research 20, 162–167.
| Nutritional and feeding value of crude glycerin for poultry. 1. Nutritional value of crude glycerin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFyntrc%3D&md5=3cfc94670788cc0a47f577aa1a9938f7CAS |
Koivula MJ, Eeva T (2010) Metal-related oxidative stress in birds. Environmental Pollution 158, 2359–2370.
| Metal-related oxidative stress in birds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVWjsrg%3D&md5=3caef927641b6f70fc96713a1fa3e752CAS |
Kussmann M, Raymond F, Affolter M (2006) Omics-driven biomarker discovery in nutrition and health. Journal of Biotechnology 124, 758–787.
| Omics-driven biomarker discovery in nutrition and health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntlCksrk%3D&md5=d575d82d932e7a96ea02cbfd63686d13CAS |
Lage JF, Paulino PV, Pereira LG, Filho SD, Oliveira AS, Detmann E, Sousa NK, Lima JC (2010) Glicerina bruta na dieta de cordeiros terminados em confinamentos. Pesquisa Agropecuária Brasileira 45, 1012–1020.
| Glicerina bruta na dieta de cordeiros terminados em confinamentos.Crossref | GoogleScholarGoogle Scholar |
Ledesma AM, De Lacoba G, Rial E (2002) The mitochondrial uncoupling proteins. Genome Biology 3, reviews3015.1
| The mitochondrial uncoupling proteins.Crossref | GoogleScholarGoogle Scholar |
Lima EM, Rodrigues PB, Alvarenga RR, Bernardino VM, Makiyama L, Lima RR, Zangerônimo MG (2012) The energy value of biodiesel glycerine products fed to broilers at different ages. Journal of Animal Physiology and Animal Nutrition 5, 1515–1520.
Liu S, Wang SZ, Li HZ, Li H (2007) Association of single nucleotide polymorphism of chicken uncoupling protein gene with muscle and fatness traits. Journal of Animal Breeding and Genetics 124, 230–235.
| Association of single nucleotide polymorphism of chicken uncoupling protein gene with muscle and fatness traits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVent7%2FP&md5=7c6a3ef803028b76246918975d8c5a24CAS |
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Methods (San Diego, Calif.) 25, 402–408.
| Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=c3e4f53b681890136f18677d055e5dbeCAS |
Menten JF, Miyada VS, Berenchtein B (2009) ‘Glicerol na alimentação animal.’ Available at http://www.agrolink.com.br [Verified 2 October 2015]
Miwa S, St-Pierre J, Partridge L, Brand MD (2003) Superoxide and hydrogen peroxide production in Drosophila mitocondria. Free Radical Biology & Medicine 35, 938–948.
| Superoxide and hydrogen peroxide production in Drosophila mitocondria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvVOhur4%3D&md5=cd1359bf80c19b850a3f8f48dd75e8a5CAS |
Nelson DL, Cox MM (2008) ‘Lehninger Principles of Biochemistry.’ 5th edn. (W.H. Freeman: New York)
Ojano-Dirain C, Toyomizu M, Wing T, Cooper M, Bottje WG (2007) Gene expression in breast muscle and duodenum from low and high feed efficient broilers. Poultry Science 86, 372–381.
| Gene expression in breast muscle and duodenum from low and high feed efficient broilers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvVSku74%3D&md5=97ae9c14c4f25162d900679b2b11b72bCAS |
Parker N, Affourtit C, Vidal-Puig A, Brand M (2008) Energization-dependent endogenous activation of proton conductance in skeletal muscle mitochondria. The Biochemical Journal 412, 131–139.
| Energization-dependent endogenous activation of proton conductance in skeletal muscle mitochondria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltVykurs%3D&md5=4efc14a9462527f9fc58c652f6d93b1aCAS |
Pfaffl MW (2001) a New mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29, e45
| a New mathematical model for relative quantification in real-time RT-PCR.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38nis12jtw%3D%3D&md5=e2b8f5be2e415bd0cc7e8afc9b8c0546CAS |
Robinson J, Newsholme EA (1969) The effects of dietary conditions and glycerol concentration on glycerol uptake by rat liver and kidney-cortex slices. Journal of Biochemistry 112, 449–453.
| The effects of dietary conditions and glycerol concentration on glycerol uptake by rat liver and kidney-cortex slices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXkt1Sju7c%3D&md5=4801d7ddd8c0ce2be6a044156e77e0bfCAS |
Romano GG, Menten JF, Freitas LW, Lima MB, Pereira R, Zavarize KC, Dias CT (2014) Effects of glycerol on the metabolism of broilers fed increasing glycerine levels. Revista Brasileira de Ciência Avícola 16, 97–105.
| Effects of glycerol on the metabolism of broilers fed increasing glycerine levels.Crossref | GoogleScholarGoogle Scholar |
Rostagno HS, Albino LF, Donzele JL, Gomes PC, Oliveira RT, Lopes DC, Euclides RF (2011) ‘Tabelas Brasileiras para aves e suínos. Composição de alimentos e exigências nutricionais.’ 3rd edn. (Editora UFV: Viçosa, Brazil)
Rover Júnior L, Hoehr NF, Vellasco AP, Kubota LT (2001) Sistema antioxidante envolvendo o ciclo metabólico da glutationa associado a métodos eletroanalíticos na avaliação do estresse oxidativo. Quimica Nova 24, 112–119.
| Sistema antioxidante envolvendo o ciclo metabólico da glutationa associado a métodos eletroanalíticos na avaliação do estresse oxidativo.Crossref | GoogleScholarGoogle Scholar |
Sakomura NK, Rostagno HS (2007) ‘Métodos de pesquisa em nutrição de monogástricos.’ (Funep: Jaboticabal, Brazil)
Silva SC, Gasparino E, Voltolini DM, Marcato SM, Tanamati F (2013) Expressão do mRNA de genes mitocondriais e desempenho produtivo de codornas alimentadas com glicerol. Pesquisa Agropecuária Brasileira 48, 228–233.
| Expressão do mRNA de genes mitocondriais e desempenho produtivo de codornas alimentadas com glicerol.Crossref | GoogleScholarGoogle Scholar |
Steibel JP, Poletto R, Coussens PM, Rosa GJ (2009) A powerful and flexible linear mixed model framework for the analysis of relative quantification RT-PCR data. Genomics 94, 146–152.
| A powerful and flexible linear mixed model framework for the analysis of relative quantification RT-PCR data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotlOlt7s%3D&md5=27b355438374e9c77974b87bc61c7247CAS |
Vidal-Puig AJ (2000) Uncoupling expectations. Nature Genetics 26, 387–388.
| Uncoupling expectations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXptVWgsLk%3D&md5=22e9738e5b2df9eb93c3a110acf55c09CAS |
Vincent HK, Innes KE, Vincent KR (2007) Oxidative stress and potential interventions to reduce oxidative stress in overweight and obesity. Diabetes, Obesity & Metabolism 9, 813–839.
| Oxidative stress and potential interventions to reduce oxidative stress in overweight and obesity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOlsLvE&md5=ec43c8670424b068aad9467ba21d8882CAS |
Wallace D (1999) Mitochondrial diseases in man and mouse. Science 283, 1482–1488.
| Mitochondrial diseases in man and mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhs1ygurk%3D&md5=c1d5b1817f90e67fa5b18d5836a07e61CAS |
Yoshikawa S, Muramoto K, Shinzawa-Itoh K, Ayoama H, Tsukihara T, Shimokata K, Shimada H (2006) Proton pumping mechanism of bovine heart cytochrome c oxidase. Biochimica et Biophysica Acta – Bioenergetics 1757, 1110–1116.
| Proton pumping mechanism of bovine heart cytochrome c oxidase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVanurvL&md5=f38e809ef774189abb4518a95915b3b3CAS |