Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

Recovery of field-grown canola from sulfur deficiency

PJ Hocking, A Pinkerton and A Good

Australian Journal of Experimental Agriculture 36(1) 79 - 85
Published: 1996

Abstract

Sulfate-sulfur was applied to sulfur (S)-deficient canola at several growth stages in a field experiment at Cargo near Orange, New South Wales. Applications of 0, 10 or 40 kg S/ha (S0, S10 and S40) as mixtures of potassium sulfate and potassium chloride were made at sowing, the 5-6 leaf rosette stage, flower buds visible, stem elongation and first flowering. The plots received either 80 or 160 kg nitrogen (N)/ha at sowing. Plants from the S0 plots showed symptoms of severe S deficiency during rapid stem elongation, and had a 52% reduction in seed yield and a 21% reduction in seed oil concentration compared with the S40 plants. Application of S10 at sowing, or topdressing S-deficient plants with this rate of S, was inadequate because, although seed oil concentrations were normal (39-42%), seed yields were 25% lower than those from plots that received S40. Topdressing S-deficient plants with S40 at either the 5-6 leaf rosette stage, flower buds visible or stem elongation resulted in the same seed yields and seed oil concentrations as obtained when S40 was applied at sowing. However, there was a 15% reduction in seed yield but no reduction in seed oil concentration when the S40 topdressing was delayed until flowering. Although S10 was inadequate to correct the S deficiency, there was no reduction in either seed yield or seed oil concentration when S10 was topdressed as late as flowering, when compared with this rate of S applied at sowing. Seed meal protein levels were increased by the S40 topdressings. Concentrations of S in seed from the S0 and S10 plants were below the critical value of 0.36% for canola. Seed N:S concentration ratios of S-deficient plants were greater than 10, but 7.5 for plants which received adequate S. Total glucosinolates in seed were increased by the application of S, but the levels were still well below the limit set for the canola standard.

https://doi.org/10.1071/EA9960079

© CSIRO 1996

Committee on Publication Ethics


Export Citation Get Permission

View Dimensions