Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

The agronomic effectiveness of reactive phosphate rocks 3. A comparison of application strategies for soluble phosphorus and reactive phosphate rock fertilisers

D. L. Garden, G. N. Ward, P. W. G. Sale, S. Tennakoon, R. P. Hindell and B. Gardiner

Australian Journal of Experimental Agriculture 37(8) 947 - 956
Published: 1997

Abstract

Summary. An investigation into the effectiveness of large (up to 80 kg P/ha), single dressings (capital applications) of different phosphorus (P) fertilisers, compared with smaller annual applications, was undertaken in the National Reactive Phosphate Rock Project. Yield comparisons were made at 23 permanent pasture sites across Australia using triple superphosphate, the highly reactive North Carolina phosphate rock and a partially acidulated form of North Carolina rock. Over 4 years, 19 of 23 sites showed no significant reduction in mean annual pasture yield with a single, large dressing applied in year 1 only, compared with an equivalent amount of total P applied in 4 annual applications. At a site in North Queensland, where the initial soil P level was very low, the large year-1 application of each fertiliser resulted in increased pasture production over that obtained from smaller annual applications because of increased pasture production in the early years. This amounted to an annual increase of between 1500 and 3000 kg dry matter/ha for the capital application strategy. The effectiveness of capital applications depended on soil, pasture and climatic conditions, and on the type of P fertiliser. Soil and environmental factors which appear to be important in determining the effect of capital applications are whether soils allow leaching of P (a function of rainfall and texture), whether they are P-sorbing (a function of clay content and soil mineralogy), the soil P content and how quickly it is being utilised by the pasture. Capital applications can be considered where P is not leached from the soil profile or where P sorption is low, and are most effective where soil P is low and there is a responsive pasture species present. Capital applications of water-soluble P fertiliser should not be considered on free-draining, low P-absorbing soils. Average annual pasture dry matter losses of about 2000 kg/ha occurred with a capital application of triple superphosphate compared with annual applications, at one such site in Tasmania. North Carolina phosphate rock was found to be the most effective P fertiliser for large capital applications, especially on free-draining, low P-absorbing soils.

https://doi.org/10.1071/EA96110

© CSIRO 1997

Committee on Publication Ethics


Export Citation Get Permission

View Dimensions