Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

Genetic evaluation of lactation persistency in the Gyr breed by using a two-trait random regression model

L. G. González-Herrera https://orcid.org/0000-0001-7156-9753 A * , R. J. Pereira https://orcid.org/0000-0001-5772-6644 B , L. El Faro C and L. G. Albuquerque D
+ Author Affiliations
- Author Affiliations

A Grupo de Investigación en Biodiversidad y Genética Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Calle 59 A # 63-20, Medellín, Colombia.

B Grupo de Melhoramento Animal de Mato Grosso, Instituto de Ciências Agrárias e Tecnológicas, Universidade Federal de Rondonópolis, Avenida dos Estudantes, N° 5055, Cidade Universitária, CEP 78735-901, Rondonópolis, MT, Brazil.

C Centro de Pesquisas de Bovinos de Corte, Instituto de Zootecnia, Rodovia Carlos Tonani, km 94, Sertãozinho, Sao Paulo, Brazil.

D Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, Via de Acesso Prof. Paulo Donato Castellani, s/n – Vila Industrial, Jaboticabal, CEP 14884-900, Sao Paulo, SP, Brazil.

* Correspondence to: luggonzalezhe@unal.edu.co

Handling Editor: Sue Hatcher

Animal Production Science 62(3) 216-224 https://doi.org/10.1071/AN20267
Submitted: 30 April 2020  Accepted: 13 October 2021   Published: 29 November 2021

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing

Abstract

Context: Lactation persistency (LP) is an economically important characteristic to include in the selection objectives of the Gyr breed. Two persistency measures were tested to establish their contribution to the genetic evaluation of milk production in this genotype. The second measure of persistency studied would be the more appropriate measure to use in the genetic evaluation of lactation persistency.

Aim: The aim of this work was to study LP in Gyr cows by using a random regression model (RRM) in two-trait analysis.

Methods: Test-day milk yields (TDMY) of the first two lactations of Gyr cows were analysed. RRM was performed by Bayesian inference using the GIBBS3F90 program. Fourth-order Legendre polynomials were used to describe the random additive genetic and permanent environmental effects of the animal. The fixed effects included in the model were contemporary group and, as covariates, age of cow at calving and the regression function according to the TDMY class of lactation as the average trajectories of lactation curve, distinguished by calving order. Two persistency measures (PSi, i.e. PS1 and PS2) were used in the analyses. Rank correlations were calculated between the predicted breeding values for PSi, 305-day lactation milk yield (MY305), and the regression coefficients a0 and a1, to determine the percentage of matching animals between rankings when different selection intensities are applied on the basis of the ranking for MY305.

Key results: The heritability estimates for PS1, PS2 and for MY305 were 0.19, 0.12 and 0.41 respectively, in the first lactation, and 0.43, 0.27 and 0.38 in the second lactation. The genetic correlation between MY305 and PS1 was negative and of low magnitude. The rank correlation between breeding values for PSi, obtained for bulls with at least five daughters with production records, was higher than 0.80 in the two lactation periods.

Conclusions: The results indicated that PS2 is the more suitable of the two persistency measures used in this work, for inclusion in genetic evaluations of lactation persistency in Brazilian Gyr cows.

Implications: PS2 must be included as a selection criteria in a breeding program for the Gyr breed.

Keywords: Bos indicus, genetic parameters, genetic variation, lactation, milk yield, rank correlation, test day model.


References

Associação Brasileira dos Criadores de Zebu (ABCZ) (2013) ‘Sumário de Touros – Aptidão Leiteira – Gir e Gir Mocho.’, 11th edn. Available at https://issuu.com/revista_abcz/docs/sumariopmgz_leite2013 [Accessed 14 July 2013]

Bignardi AB, El Faro L, Cardoso VL, Machado PF, de Albuquerque LG (2009) Random regression models to estimate test-day milk yield genetic parameters Holstein cows in Southeastern Brazil. Livestock Science 123, 1–7.
Random regression models to estimate test-day milk yield genetic parameters Holstein cows in Southeastern Brazil.Crossref | GoogleScholarGoogle Scholar |

Canaza-Cayo AW, Lópes PS, da Silva MVGB, Torres RA, Martins MF, Arbex WA, Cobuci JA (2015) Genetic parameters for milk yield and lactation persistency using random regression models in Girolando cattle. Asian-Australasian Journal of Animal Sciences 28, 1407–1418.
Genetic parameters for milk yield and lactation persistency using random regression models in Girolando cattle.Crossref | GoogleScholarGoogle Scholar | 26323397PubMed |

Freitas LS, Silva MA, Verneque RS, Valente BD, Corrêa GS, Ferreira RF, Peixoto MGCD, Santos GG (2010) Avaliação da persistência na lactação da raça Guzerá, utilizando modelos de regressão aleatória. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 62, 401–408.
Avaliação da persistência na lactação da raça Guzerá, utilizando modelos de regressão aleatória.Crossref | GoogleScholarGoogle Scholar |

Geweke J (1992) Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In ‘Bayesian statistics’. (Eds JM Bernardo, JO Berger, AP Dawid, AFM Smith) pp. 625–631. (Oxford University Press: New York, USA)

González Herrera LG, El Faro L, de Albuquerque LG, Humberto T, Machado CHC (2008) Estimativas de parâmetros genéticos para a produção de leite e persistência da lactação em vacas Gir, aplicando modelos de regressão aleatória. Revista Brasileira de Zootecnia 37, 1584–1594.
Estimativas de parâmetros genéticos para a produção de leite e persistência da lactação em vacas Gir, aplicando modelos de regressão aleatória.Crossref | GoogleScholarGoogle Scholar |

Gonzalez-Herrera LG, El Faro L, Bignardi AB, Pereira RJ, Machado CHC, Albuquerque LG (2015) Random regression analysis of test-day milk yields in the first and second lactations of Brazilian Gyr cows. Genetics and Molecular Research 14, 16497–16507.
Random regression analysis of test-day milk yields in the first and second lactations of Brazilian Gyr cows.Crossref | GoogleScholarGoogle Scholar | 26662449PubMed |

González-Peña DF, Espinoza VJL, Palacios EA, Guerra DI, Évora JCM, Portales AG, Ortega RP, Guillén AT (2011) Parámetros genéticos para la persistencia de la lactación en vacas Siboney usando modelos de regresión aleatória. Revista Mexicana de Ciencias Pecuarias 2, 151–160.

Grayaa M, Vanderick S, Rekik B, Ben Gara A, Hanzen C, Grayaa S, Reis Mota R, Hammami H, Gengler N (2019) Linking first lactation survival to milk yield and components and lactation persistency in Tunisian Holstein cows. Archives Animal Breeding 62, 153–160.
Linking first lactation survival to milk yield and components and lactation persistency in Tunisian Holstein cows.Crossref | GoogleScholarGoogle Scholar | 31807625PubMed |

Jakobsen JH, Madsen P, Jensen J, Pedersen J, Christensen LG, Sorensen DA (2002) Genetic parameters for milk production and persistency for Danish Holstein estimated in random regression models using REML. Journal of Dairy Science 85, 1607–1616.
Genetic parameters for milk production and persistency for Danish Holstein estimated in random regression models using REML.Crossref | GoogleScholarGoogle Scholar | 12146494PubMed |

Jamrozik J, Gianola D, Schaeffer LR (2001) Bayesian estimation of genetic parameters for test day records in dairy cattle using linear hierarchical models. Livestock Production Science 71, 223–240.
Bayesian estimation of genetic parameters for test day records in dairy cattle using linear hierarchical models.Crossref | GoogleScholarGoogle Scholar |

Jamrozik J, Schaeffer LR, Weigel KA (2002) Estimates of genetic parameters for single- and multiple-country test-day models. Journal of Dairy Science 85, 3131–3141.
Estimates of genetic parameters for single- and multiple-country test-day models.Crossref | GoogleScholarGoogle Scholar | 12487481PubMed |

Kheirabadi K, Alijani S (2014) Genetic parameters for milk production and persistency in the Iranian Holstein population by the multitrait random regression model. Archives Animal Breeding 57, 1–12.
Genetic parameters for milk production and persistency in the Iranian Holstein population by the multitrait random regression model.Crossref | GoogleScholarGoogle Scholar |

Kirkpatrick M, Lofsvold D, Bulmer M (1990) Analysis of the inheritance, selection and evolution of growth trajectories. Genetics 124, 979–993.
Analysis of the inheritance, selection and evolution of growth trajectories.Crossref | GoogleScholarGoogle Scholar | 2323560PubMed |

Misztal I (2010) ‘BLUPF90 manual.’ (Georgia University: GA, USA) Available at http://nce.ads.uga.edu/∼ignacy/newprograms.html [Accessed 10 October 2012]

Pereira RJ, Verneque RS, Lopes PS, Santana ML, Lagrotta MR, Torres RA, Verseci Filho AE, Machado MA (2012) Milk yield persistency in Brazilian Gyr cattle based on a random regression model. Genetics and Molecular Research 11, 1599–1609.
Milk yield persistency in Brazilian Gyr cattle based on a random regression model.Crossref | GoogleScholarGoogle Scholar | 22782579PubMed |

Pereira RJ, Bignardi AB, El Faro L, Verneque RS, Vercesi Filho AE, Albuquerque LG (2013a) Random regression models using Legendre polynomials or linear splines for test-day milk yield of dairy Gyr (Bos indicus) cattle. Journal of Dairy Science 96, 565–574.
Random regression models using Legendre polynomials or linear splines for test-day milk yield of dairy Gyr (Bos indicus) cattle.Crossref | GoogleScholarGoogle Scholar | 23084890PubMed |

Pereira RJ, Ayres DR, El Faro L, Verseci Filho MA, Verneque RS, de Albuquerque LG (2013b) Genetic parameters for production traits of dairy Gyr (Bos indicus) × Holstein cattle estimated with a random regression model. Livestock Science 158, 24–31.
Genetic parameters for production traits of dairy Gyr (Bos indicus) × Holstein cattle estimated with a random regression model.Crossref | GoogleScholarGoogle Scholar |

Rebouças GF, Gonçalves TM, Martinez ML, Azevedo Junior J, Koops W (2008) Novas funções para estimar a produção de leite, em 305 dias de lactação, de vacas da raça Gir. Revista Brasileira de Zootecnia 37, 1222–1229.
Novas funções para estimar a produção de leite, em 305 dias de lactação, de vacas da raça Gir.Crossref | GoogleScholarGoogle Scholar |

Santos DJA, Peixoto MGCD, Aspilcueta Borquis RR, Panetto JCC, El Faro L, Tonhati H (2014) Predicting breeding values for milk yield of Guzerá (Bos indicus) cows using random regression models. Livestock Science 167, 41–50.
Predicting breeding values for milk yield of Guzerá (Bos indicus) cows using random regression models.Crossref | GoogleScholarGoogle Scholar |

Smith BJ (2007) boa: an R package for MCMC output convergence assessment and posterior inference. Journal of Statistical Software 21, 1–37.
boa: an R package for MCMC output convergence assessment and posterior inference.Crossref | GoogleScholarGoogle Scholar |

Strabel T, Jamrozik J (2006) Genetic analysis of milk production traits of Polish Black and White cattle using large-scale random regression test-day models. Journal of Dairy Science 89, 3152–3163.
Genetic analysis of milk production traits of Polish Black and White cattle using large-scale random regression test-day models.Crossref | GoogleScholarGoogle Scholar | 16840632PubMed |

Zurwan A, Moaeen-ud-Din M, Bilal G Zurwan A, Moaeen-ud-Din M, Bilal G Zurwan A, Moaeen-ud-Din M, Bilal G (2017) Estimation of genetic parameters for persistency of lactation in Sahiwal dairy cattle. Pakistan Journal of Zoology 49, 877–882.
Estimation of genetic parameters for persistency of lactation in Sahiwal dairy cattle.Crossref | GoogleScholarGoogle Scholar |