Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

In vitro digestion of tropical legume starch is influenced by the combination of heating and soaking treatments

Julieta Torres A , Luz S. Muñoz A , Michael Peters B and Carlos A. Montoya A C D
+ Author Affiliations
- Author Affiliations

A Universidad Nacional de Colombia, Dept de Produccion Animal, Carrera 32 Chapinero, Palmira, Colombia.

B Centro Internacional de Agricultura Tropical, AA 6713, Cali, Colombia.

C Massey Institute of Food Science and Technology, Riddet Institute (Massey University), Private Bag 11222, Palmerston North 4442, New Zealand.

D Corresponding author. Email: c.montoya@massey.ac.nz

Animal Production Science 59(4) 688-695 https://doi.org/10.1071/AN17519
Submitted: 30 July 2017  Accepted: 26 January 2018   Published: 17 April 2018

Abstract

Raw legumes have in general low starch digestion, which limits their use in animal nutrition. This study aimed to determine the effect of different thermal (raw, autoclaving and boiling for 5 and 20 min) and soaking (without or with) treatments on the in vitro degree of hydrolysis (DH) of starch for selected grains of tropical legumes (Canavalia brasiliensis, CB; Lablab purpureus, LP; pink, red and white colour hulls Vigna unguiculata, PVU, RVU and WVU). Indigested residues collected after in vitro sequential pepsin-pancreatin (120–240 min) digestion were used to determine the starch DH and the estimated digestible starch content. The starch content was in general higher when the legumes were treated (e.g. autoclaving increased 28% the starch content of CB). Autoclaving and boiling for 5 min increased the DH for both unsoaked and soaked CB and RVU (+6–16% units), whereas they reduced the DH for unsoaked boiled LP, PVU, WVU and unsoaked autoclaved LP (P < 0.05). Extending the boiling from 5 to 20 min reduced the DH for CB, PVU, RVU and WVU (–8–22% units), whereas it increased 17% units the DH of LP (P < 0.05). In contrast, extending the autoclaving increased DH for soaked LP, PVU and WVU (+4–13% units) (P < 0.05), but did not affect the other legumes (P > 0.05). Similar trends were observed for the estimated digestible starch content, despite the changes in starch content. In conclusion, the effect of soaking and heating treatment combinations on the DH of starch and estimated digestible starch content varied among legumes. Conditions for starch determination may be adapted for legumes.

Additional keywords: digestible starch content, heating, in vitro starch digestion, soaking, tropical legume.


References

Alonso R, Aguirre A, Marzo F (2000) Effects of extrusion and traditional processing methods on antinutrients and in vitro digestibility of protein and starch in faba and kidney beans. Food Chemistry 68, 159–165.
Effects of extrusion and traditional processing methods on antinutrients and in vitro digestibility of protein and starch in faba and kidney beans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkt12juw%3D%3D&md5=816ad47ccdde6d4c8f489cfecf605a55CAS |

Association of Official Analytical Chemists (AOAC) (1984) ‘Official methods of analysis.’ 14th edn. (Association of Official Analytical Chemists: Washington, DC)

Association of Official Analytical Chemists (AOAC) (1990) ‘Official methods of analysis.’ 15th edn. (Association of Official Analytical Chemists: Arlington, VA)

Apata DF (2008) Effect of cooking methods on available and unavailable carbohydrates of some tropical grain legumes. African Journal of Biotechnology 7, 2940–2945.

Bello‐Pérez LA, Sáyago‐Ayerdi SG, Chávez‐Murillo CE, Agama‐Acevedo E, Tovar J (2007) Proximal composition and in vitro digestibility of starch in lima bean (Phaseolus lunatus) varieties. Journal of the Science of Food and Agriculture 87, 2570–2575.
Proximal composition and in vitro digestibility of starch in lima bean (Phaseolus lunatus) varieties.Crossref | GoogleScholarGoogle Scholar |

Bravo L, Siddhuraju P, Saura-Calixto F (1998) Effect of various processing methods on the in vitro starch digestibility and resistant starch content of Indian pulses. Journal of Agricultural and Food Chemistry 46, 4667–4674.
Effect of various processing methods on the in vitro starch digestibility and resistant starch content of Indian pulses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmt1yhsL4%3D&md5=72e4cae6520e9cd03efebe2a19e73426CAS |

Carpita CN, Kanabus J (1987) Extraction of starch by dimethyl sulfoxide and quantitation by enzymatic assay. Analytical Biochemistry 161, 132–139.
Extraction of starch by dimethyl sulfoxide and quantitation by enzymatic assay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhtlCksbw%3D&md5=d4c8aa4531eb71908413523fb09c36b4CAS |

de Almeida Costa GE, da Silva Queiroz-Monici K, Pissini Machado Reis SM, de Oliveira AC (2006) Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chemistry 94, 327–330.
Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes.Crossref | GoogleScholarGoogle Scholar |

Englyst H, Wiggins HS, Cummings JH (1982) Determination of the non-starch polysaccharides in plant foods by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst (London) 107, 307–318.
Determination of the non-starch polysaccharides in plant foods by gas-liquid chromatography of constituent sugars as alditol acetates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XksFCjtbk%3D&md5=11d171e6af7bf7d7584933ba5ee0e4fcCAS |

Eyaru R, Shrestha AK, Arcot J (2009) Effect of various processing techniques on digestibility of starch in red kidney bean (Phaseolus vulgaris) and two varieties of peas (Pisum sativum). Food Research International 42, 956–962.
Effect of various processing techniques on digestibility of starch in red kidney bean (Phaseolus vulgaris) and two varieties of peas (Pisum sativum).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovF2ktro%3D&md5=08daff6b028409e521bc6050653099c3CAS |

Faisant N, Planchot V, Kozlowski F, Pacouret MP, Colonna P, Champ M (1995) Resistant starch determination adapted to products containing high level of resistant starch. Sciences des Aliments 15, 83–89.

Fuentes-Zaragoza E, Riquelme-Navarrete MJ, Sánchez-Zapata E, Pérez-Álvarez JA (2010) Resistant starch as functional ingredient: a review. Food Research International 43, 931–942.
Resistant starch as functional ingredient: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVertL8%3D&md5=4f9e87559722304ea3e8cb7efa00b4c5CAS |

Guillon F, Champ MJ (2002) Carbohydrate fractions of legumes: uses in human nutrition and potential for health. British Journal of Nutrition 88, S293–S306.
Carbohydrate fractions of legumes: uses in human nutrition and potential for health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVajsLY%3D&md5=b96b802f9999f5fe24d745e3d41b78fbCAS |

Holm J, Björck I, Drews A, Asp NG (1986) A rapid method for the analysis of starch. Stärke 38, 224–226.
A rapid method for the analysis of starch.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XltFekt7s%3D&md5=7f9deb88393fdb5abd734d6d83656310CAS |

Hoover R, Sosulski FW (1985) Studies on the functional characteristics and digestibility of starches from Phaseolus vulgaris biotypes. Stärke 37, 181–191.
Studies on the functional characteristics and digestibility of starches from Phaseolus vulgaris biotypes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXksFarsbc%3D&md5=4c72e95f38bbfd7ca5c86305072b5cc3CAS |

Hoover R, Sosulski FW (1991) Composition, structure, functionality, and chemical modification of legume starches: A review. Journal Canadian of Physiology and Pharmacology 69, 79–92.
Composition, structure, functionality, and chemical modification of legume starches: A review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXht1Sgt7c%3D&md5=1e2344801dc28dd15bf6e8af864b6cd3CAS |

Hoover R, Zhou Y (2003) In vitro and in vivo hydrolysis of legume starches by α-amylase and resistant starch formation in legumes-a review. Carbohydrate Polymers 54, 401–417.
In vitro and in vivo hydrolysis of legume starches by α-amylase and resistant starch formation in legumes-a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXos1Ontb4%3D&md5=0c52da1842ea389118e375d455169407CAS |

Kaur M, Sandhu KS, Lim ST (2010) Microstructure, physicochemical properties and in vitro digestibility of starches from different Indian lentil (Lens culinaris) cultivars. Carbohydrate Polymers 79, 349–355.
Microstructure, physicochemical properties and in vitro digestibility of starches from different Indian lentil (Lens culinaris) cultivars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlGjtLrP&md5=fa1c9c9844b2e537a3659ee9e022156aCAS |

Khatoon N, Prakash J (2004) Nutritional quality of microwave-cooked and pressure-cooked legumes. International Journal of Food Sciences and Nutrition 55, 441–448.
Nutritional quality of microwave-cooked and pressure-cooked legumes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXit1GltQ%3D%3D&md5=abaf43611529223fa5a292318afd1771CAS |

Knudsen KEB (1997) Carbohydrate and lignin contents of plant materials used in animal feeding. Animal Feed Science and Technology 67, 319–338.
Carbohydrate and lignin contents of plant materials used in animal feeding.Crossref | GoogleScholarGoogle Scholar |

Laswai GH, Lekule FP, Kimambo AE, Sarawatt SV, Sundstol F (1998) The effect of processing method of dolichos bean (Lablab purpureus L. Sweet) on the digestibility and performance of growing-finishing pigs. Tanzania Journal of Agricultural Sciences 1, 121–130.

Libby RA (1970) Direct starch analysis using DMSO solubilization and glucoamylase. Cereal Chemistry 47, 273–281.

Longe OG (1980) Carbohydrate composition of different varieties of cowpea (Vigna unguiculata). Food Chemistry 6, 153–161.
Carbohydrate composition of different varieties of cowpea (Vigna unguiculata).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhtF2lur0%3D&md5=439da089a90d263a171264e23eb7bf6cCAS |

Marconi E, Ruggeri S, Cappelloni M, Leonardi D, Carnovale E (2000) Physicochemical, nutritional, and microstructural characteristics of chickpeas (Cicer arietinum L.) and common beans (Phaseolus vulgaris L.) following microwave cooking. Journal of Agricultural and Food Chemistry 48, 5986–5994.
Physicochemical, nutritional, and microstructural characteristics of chickpeas (Cicer arietinum L.) and common beans (Phaseolus vulgaris L.) following microwave cooking.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotFeqsbg%3D&md5=e4461c2c64cec88fbf462dff03af6ac5CAS |

Niba LL, Rose N (2003) Effect of soaking solution concentration on resistant starch and oligosaccharide content of adzuki (V. angularis), Fava (V. faba), lima (P. lunatus) and mung bean (V. radiata L.). Journal of Food Science 1, 4–8.

Noblet J (1996) Digestive and metabolic utilization of dietary energy in pig feeds: comparison of energy systems. In ‘Recent advances in animal nutrition’. (Eds PC Garnsworthy, J Wiseman, W Haresign) pp. 207–231. (Nottingham University Press: Nottingham)

Oryschak MA, Zijlstra RT (2002) Effect of dietary particle size and nutrient supply on energy digestibility and nitrogen excretion in ileal cannulated grower pigs. Canadian Journal of Animal Science 82, 603–606.
Effect of dietary particle size and nutrient supply on energy digestibility and nitrogen excretion in ileal cannulated grower pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhslKksLY%3D&md5=385ca5862952563525a7664887a6f0e8CAS |

Ovando-Martínez M, Osorio-Díaz P, Whitney K, Bello-Pérez LA, Simsek S (2011) Effect of the cooking on physicochemical and starch digestibility properties of two varieties of common bean (Phaseolus vulgaris L.) grown under different water regimes. Food Chemistry 129, 358–365.
Effect of the cooking on physicochemical and starch digestibility properties of two varieties of common bean (Phaseolus vulgaris L.) grown under different water regimes.Crossref | GoogleScholarGoogle Scholar |

Philippeau C, Le Deschault de Monredon F, Michalet-Doreau B (1999) Relationship between ruminal starch degradation and the physical characteristics of corn grain. Journal of Animal Science 77, 238–243.
Relationship between ruminal starch degradation and the physical characteristics of corn grain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtFyhtbY%3D&md5=701f5cd40d607fadda64ad4414bea7f3CAS |

Piecyk M, Drużyńska B, Worobiej E, Wołosiak R, Ostrowska-Ligęza E (2013) Effect of hydrothermal treatment of runner bean (Phaseolus coccineus) seeds and starch isolation on starch digestibility. Food Research International 50, 428–437.
Effect of hydrothermal treatment of runner bean (Phaseolus coccineus) seeds and starch isolation on starch digestibility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVGmtA%3D%3D&md5=1ecd5db22750ecfb283ebd35c9c94dcbCAS |

Prinyawiwatkul W, Beuchat LR, McWatters KH, Phillips RD (1997) Functional properties of cowpea (Vigna unguiculata) flour as affected by soaking, boiling, and fungal fermentation. Journal of Agricultural and Food Chemistry 45, 480–486.
Functional properties of cowpea (Vigna unguiculata) flour as affected by soaking, boiling, and fungal fermentation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvFOlsg%3D%3D&md5=a3fa48b063708e0960c3b9d2fafea0e0CAS |

Pujolà M, Farreras A, Casañas F (2007) Protein and starch content of raw, soaked and cooked beans (Phaseolus vulgaris L.). Food Chemistry 102, 1034–1041.
Protein and starch content of raw, soaked and cooked beans (Phaseolus vulgaris L.).Crossref | GoogleScholarGoogle Scholar |

Rehman Z (2007) Domestic processing effects on available carbohydrate content and starch digestibility of black grams (Vigna mungo) and chick peas (Cicer arietium). Food Chemistry 100, 764–767.
Domestic processing effects on available carbohydrate content and starch digestibility of black grams (Vigna mungo) and chick peas (Cicer arietium).Crossref | GoogleScholarGoogle Scholar |

Rehman Z, Shah WH (2005) Thermal heat processing effects on antinutrients, protein and starch digestibility of food legumes. Food Chemistry 91, 327–331.
Thermal heat processing effects on antinutrients, protein and starch digestibility of food legumes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKgu7rL&md5=4e2d7d9d37768c132bdd1a37354f9653CAS |

Sajilata MG, Singhal RS, Kulkarni PR (2006) Resistant starch: a review. Comprehensive Reviews in Food Science and Food Safety 5, 1–17.
Resistant starch: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvFWgtbY%3D&md5=fba4754a227bbc1708f40bb7e1f79b6aCAS |

Sandhu KS, Lim ST (2008) Digestibility of legume starches as influenced by their physical and structural properties. Carbohydrate Polymers 71, 245–252.
Digestibility of legume starches as influenced by their physical and structural properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWksb3F&md5=046d9807229a23e1cd3bb0d7b01fea82CAS |

Soral-Śmietana M, Krupa U (2005) Changes in the macrocomponents and microstructure of white bean seeds upon mild hydrothermal treatment. Czech Journal of Food Sciences 23, 74–83.
Changes in the macrocomponents and microstructure of white bean seeds upon mild hydrothermal treatment.Crossref | GoogleScholarGoogle Scholar |

Steel RGD, Torrie JH (1980) ‘Principles and procedures of statistics, a biometrical approach.’ 2nd edn. (McGraw-Hill Book Company: New York, NY)

Tharanathan RN, Mahadevamma S (2003) Grain legumes-a boon to human nutrition. Trends in Food Science & Technology 14, 507–518.
Grain legumes-a boon to human nutrition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovVWltr8%3D&md5=4035b99610d5d62e43917284d72fb24bCAS |

Torres J, Muñoz LS, Peters M, Montoya CA (2013) Characterization of the nutritive value of tropical beans as alternative ingredients for small-scale pork producers using in vitro enzymatic hydrolysis and fermentation. Journal of Animal Physiology and Animal Nutrition 97, 1066–1074.
Characterization of the nutritive value of tropical beans as alternative ingredients for small-scale pork producers using in vitro enzymatic hydrolysis and fermentation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVarsLbI&md5=8ba52a602075047173c20a99a987f73aCAS |

Torres J, Rutherfurd SM, Muñoz LS, Peters M, Montoya CA (2016) The impact of heating and soaking on the in vitro enzymatic hydrolysis of protein varies in different species of tropical legumes. Food Chemistry 194, 377–382.
The impact of heating and soaking on the in vitro enzymatic hydrolysis of protein varies in different species of tropical legumes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlSnu73L&md5=747242239149bc778de1e8d85e60e957CAS |

Torres J, Muñoz LS, Peters M, Montoya CA (2018) Heating and soaking influence the in vitro hindgut fermentation of tropical legume grains in pigs. Journal of Agricultural and Food Chemistry 66, 532–539.
Heating and soaking influence the in vitro hindgut fermentation of tropical legume grains in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhvFCjsL7E&md5=206edc2a4448d74ffe8663d1d61a5aa4CAS |

Umapathy E, Erlwanger KH (2008) The effects of dietary raw and heat-treated cowpea (Vigna unguiculata) on growth and intestinal histomorphometry of pigs. The Journal of Biological Sciences 8, 74–80.
The effects of dietary raw and heat-treated cowpea (Vigna unguiculata) on growth and intestinal histomorphometry of pigs.Crossref | GoogleScholarGoogle Scholar |

Velasco ZI, Rascón A, Tovar J (1997) Enzymic availability of starch in cooked black beans (Phaseolus vulgaris L) and cowpeas (Vigna sp.). Journal of Agricultural and Food Chemistry 45, 1548–1551.
Enzymic availability of starch in cooked black beans (Phaseolus vulgaris L) and cowpeas (Vigna sp.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtlWku7w%3D&md5=e1df7fe258ad8d50fea062000e428939CAS |

Würsch P, Del Vedovo S, Koellreutter B (1986) Cell structure and starch nature as key determinants of the digestion rate of starch in legume. The American Journal of Clinical Nutrition 43, 25–29.
Cell structure and starch nature as key determinants of the digestion rate of starch in legume.Crossref | GoogleScholarGoogle Scholar |

Yadav BS, Sharma A, Yadav RB (2010) Resistant starch content of conventionally boiled and pressure-cooked cereals, legumes and tubers. Journal of Food Science and Technology 47, 84–88.
Resistant starch content of conventionally boiled and pressure-cooked cereals, legumes and tubers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovFCqt7k%3D&md5=e82b41d560e9062f23c2430233996057CAS |

Zamora NC (2003) Efecto de la extrusión sobre la actividad de factores antinutricionales y digestibilidad in vitro de proteínas y almidón en harinas de Canavalia ensiformis. Archivos Latinoamericanos de Nutricion 53, 293–298.