Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
REVIEW

Nutrition of antler growth in deer

G. McL. Dryden
+ Author Affiliations
- Author Affiliations

Dryden Animal Science, Summerholm, Qld 4341, Australia. Email: gm.dryden@gmail.com

Animal Production Science 56(6) 962-970 https://doi.org/10.1071/AN15051
Submitted: 30 January 2015  Accepted: 3 September 2015   Published: 25 February 2016

Abstract

Stags are susceptible to the effects of nutrition at several stages during their lives and during the antler cycle. Nutrition during the in utero, post-natal (suckling) and yearling stages influences the size of spike antlers, and, generally, there is a close relationship between bodyweight and antler weight in stags aged up to 5 years. While antler size is not greatly affected by nutrition during the growth of immature (velvet) antler, it is influenced by body size and condition at casting, i.e. at the beginning of new antler growth. Antler growth appears to have a high priority for nutrients, especially energy, protein and calcium. Antler growth in adult stags is little affected by diet protein concentrations over 7%, but supplements of protected protein or methionine may improve antler growth. Substantial amounts of calcium and phosphorus are sequestered in antlers as they become mineralised, and calcium is withdrawn from the skeleton in support of this. Feeding programs to obtain good antler growth involve recognising the periods when juvenile stags are susceptible to under-nutrition, and providing sufficient nutrients to re-establish adequate body condition in adult stags between the end of the rut and antler casting.

Additional keyword: minerals.


References

Adam CL (1994) Deer management: husbandry (feeding). In ‘Management and diseases of deer’. 2 edn. (Eds TL Alexander, D Buxton) pp. 44–54. (Macdonald Lindsay Pinder: Edinburgh, Scotland)

Allen SP, Maden M, Price JS (2002) A role for retinoic acid in regulating the regeneration of deer antlers. Developmental Biology 251, 409–423.
A role for retinoic acid in regulating the regeneration of deer antlers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosVOgtro%3D&md5=ac4df5a8fd973366346aa52424e1147bCAS | 12435367PubMed |

Asleson MA, Hellgren EC, Varner LW (1997) Effects of seasonal protein restriction on antlerogenesis and body mass in adult male white-tailed deer. The Journal of Wildlife Management 61, 1098–1107.
Effects of seasonal protein restriction on antlerogenesis and body mass in adult male white-tailed deer.Crossref | GoogleScholarGoogle Scholar |

Ball AJ, Thompson JM, Fennessy PF (1994) Relationship between velvet antler weight and liveweight in red deer (Cervus elaphus). New Zealand Journal of Agricultural Research 37, 153–157.
Relationship between velvet antler weight and liveweight in red deer (Cervus elaphus).Crossref | GoogleScholarGoogle Scholar |

Barrette C (1985) Antler eating and antler growth in wild axis deer. Mammalia 49, 491–499.
Antler eating and antler growth in wild axis deer.Crossref | GoogleScholarGoogle Scholar |

Bartoš L, Bahbouh R, Vach M (2007) Repeatability of size and fluctuating asymmetry of antler characteristics in red deer (Cervus elaphus) during ontogeny. Biological Journal of the Linnean Society. Linnean Society of London 91, 215–226.
Repeatability of size and fluctuating asymmetry of antler characteristics in red deer (Cervus elaphus) during ontogeny.Crossref | GoogleScholarGoogle Scholar |

Bartoskewitz ML, Hewitt DG, Laurenz JC, Pitts JS, Bryant FC (2007) Effect of dietary copper and zinc concentrations on white-tailed deer antler growth, body size, and immune system function. Small Ruminant Research 73, 87–94.
Effect of dietary copper and zinc concentrations on white-tailed deer antler growth, body size, and immune system function.Crossref | GoogleScholarGoogle Scholar |

Blaxter KL, Kay RNB, Sharman GAM, Cunningham JMM, Hamilton WJ (1974) ‘Farming the red deer.’ (HMSO: Edinburgh, UK)

Ceacero F, Landete-Castillejos T, García AJ, Estévez JA, Gaspar-López E, Gallego L (2010) Effects of ad libitum mineral consumption in Iberian red deer hinds and calves. Animal Production Science 50, 37–44.
Effects of ad libitum mineral consumption in Iberian red deer hinds and calves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOms7jN&md5=3ed734cdd08c9585097729a282905961CAS |

Chapman DI (1981) Antler structure and function: a hypothesis. Journal of Biomechanics 14, 195–197.
Antler structure and function: a hypothesis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3M3hsFOhtQ%3D%3D&md5=32d5fa5be2ec1ee03567a26a8d782335CAS | 7240281PubMed |

Davison KS, Siminoski K, Adachi JD, Hanley DA, Goltzman D, Hodsman AB, Josse R, Kaiser S, Olszynski WP, Papaioannou A, Ste Marie LG, Kendler DL, Tenenhouse A, Brown JP (2006) Bone strength: the whole is greater than the sum of its parts. Seminars in Arthritis and Rheumatism 36, 22–31.
Bone strength: the whole is greater than the sum of its parts.Crossref | GoogleScholarGoogle Scholar | 16887465PubMed |

Dobrowolska A. (2002) Chemical composition of the red deer (Cervus elaphus) antlers, with a particular reference to the toxic metal contents. Zeitschrift fur Jagdwissenschaft 48S, 148–155.

Drechsler DH (1992) On the correlation between various physical and antler characteristics of red deer with age. Zeitschrift fur Jagdwissenschaft 38, 101–106.

Dryden GMcL (2011) Quantitative nutrition of deer: energy, protein and water. Animal Production Science 51, 292–302.
Quantitative nutrition of deer: energy, protein and water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktl2gt74%3D&md5=5b3ff7e648353ca715f9e54c49985790CAS |

Ellison RS (1995) Trace elements in deer. Proceedings of the Deer Branch, New Zealand Veterinary Association Conference 1995, 57–68.

Estevez JA, Landete-Castillejos T, Martinez A, Garcia AJ, Ceacero F, Gaspar-Lopez E, Calatayud A, Gallego L (2009) Antler mineral composition of Iberian red deer Cervus elaphus hispanicus is related to mineral profile of diet. Acta Theriologica 54, 235–242.

French CE, McEwen LC, Magruder ND, Ingram RH, Swift RW (1956) Nutrient requirements for growth and antler development in the white-tailed deer. The Journal of Wildlife Management 20, 221–232.
Nutrient requirements for growth and antler development in the white-tailed deer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2sXos1KhsA%3D%3D&md5=a5e8723a4ea92cbf56adaf34a9e40b44CAS |

Gao X, Yang F, Guangyu L (2010) Effects of dietary protein level on sika deer body weight and velvet production. In ‘Advances and challenges in deer biology. 7th international deer biology congress’. (Eds W Flueck, J Smith, A Charrier) p. 127. (International Deer Biology Congress Scientific Steering Committee: Huilo Huilo, Chile)

Gaspar-López E, García AJ, Landete-Castillejos T, Carrión D, Estevez JA, Gallego L (2008) Growth of the first antler in Iberian red deer (Cervuselaphus hispanicus). European Journal of Wildlife Research 54, 1–5.
Growth of the first antler in Iberian red deer (Cervuselaphus hispanicus).Crossref | GoogleScholarGoogle Scholar |

Gaspar-López E, Landete-Castillejos T, Estevez JA, Ceacero F, Gallego L, García AJ (2010) Biometrics, testosterone, cortisol and antler growth cycle in Iberian red deer stags (Cervus elaphus hispanicus). Reproduction in Domestic Animals 45, 243–249.
Biometrics, testosterone, cortisol and antler growth cycle in Iberian red deer stags (Cervus elaphus hispanicus).Crossref | GoogleScholarGoogle Scholar | 18992114PubMed |

Gómez JA, Landete-Castillejos T, Garcia AJ, Gallego L (2006) Importance of growth during lactation on body size and antler development in the Iberian red deer (Cervus elaphus hispanicus). Livestock Science 105, 27–34.
Importance of growth during lactation on body size and antler development in the Iberian red deer (Cervus elaphus hispanicus).Crossref | GoogleScholarGoogle Scholar |

Gómez JA, Landete-Castellejos T, García AJ, Gaspar-López E, Estevez JA, Gallego L (2008) Lactation growth influences mineral composition of first antler in Iberian red deer Cervus elaphus hispanicus. Wildlife Biology 14, 331–338.
Lactation growth influences mineral composition of first antler in Iberian red deer Cervus elaphus hispanicus.Crossref | GoogleScholarGoogle Scholar |

Gómez JA, Ceacero F, Landete-Castillejos T, Gaspar-López E, García AJ, Gallego L (2012) Factors affecting antler investment in Iberian red deer. Animal Production Science 52, 867–873.
Factors affecting antler investment in Iberian red deer.Crossref | GoogleScholarGoogle Scholar |

Gomez S, Garcia AJ, Luna S, Kierdorf U, Kierdorf H, Gallego L, Landete-Castillejos T (2013) Labeling studies on cortical bone formation in the antlers of red deer (Cervus elaphus). Bone 52, 506–515.
Labeling studies on cortical bone formation in the antlers of red deer (Cervus elaphus).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38bptFOitA%3D%3D&md5=43b193e23ca09fe0ae608eb18729955aCAS | 23000508PubMed |

Grace ND, Wilson PR (2002) Trace element metabolism, dietary requirements, diagnosis and prevention of deficiencies in deer. New Zealand Veterinary Journal 50, 252–259.
Trace element metabolism, dietary requirements, diagnosis and prevention of deficiencies in deer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtF2rtrs%3D&md5=450564f4e1f78f6db65a30011e576347CAS | 16032281PubMed |

Grace ND, Wilson PR, Quinn AK (2005) The effect of copper-amended fertiliser and copper oxide wire particles on the copper status of farmed red deer (Cervus elaphus) and their progeny. New Zealand Veterinary Journal 53, 31–38.
The effect of copper-amended fertiliser and copper oxide wire particles on the copper status of farmed red deer (Cervus elaphus) and their progeny.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXislSrsLs%3D&md5=dd49ea8ec5574ebeeb0d68efac3d2a8bCAS | 15731832PubMed |

Grasman BT, Hellgren EC (1993) Phosphorus-nutrition in white-tailed deer: nutrient balance, physiological-responses, and antler growth. Ecology 74, 2279–2296.
Phosphorus-nutrition in white-tailed deer: nutrient balance, physiological-responses, and antler growth.Crossref | GoogleScholarGoogle Scholar |

Huxley JS (1931) The relative size of antlers in deer. Proceedings of the Zoological Society of London 101, 819–864.
The relative size of antlers in deer.Crossref | GoogleScholarGoogle Scholar |

Hyvärinen H, Kay RNB, Hamilton WJ (1977) Variation in the weight, specific gravity and composition of the antlers of red deer (Cervus elaphus L.). British Journal of Nutrition 38, 301–311.
Variation in the weight, specific gravity and composition of the antlers of red deer (Cervus elaphus L.).Crossref | GoogleScholarGoogle Scholar | 588531PubMed |

Jeon BT, Kim MH, Lee SM, Moon SH (2006) Effects of dietary protein level on dry matter intake, and production and chemical composition of velvet antler in spotted deer fed forest by-product silage. Asian–Australasian Journal of Animal Sciences 19, 1737–1741.
Effects of dietary protein level on dry matter intake, and production and chemical composition of velvet antler in spotted deer fed forest by-product silage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVansg%3D%3D&md5=4b8f7a31fa84e14303454d2f0f6a350dCAS |

Jeon BT, Kim S, Lee S, Park P, Sung S, Kim J, Moon S (2009) Effect of antler growth period on the chemical composition of velvet antler in sika deer (Cervus nippon). Mammalian Biology 74, 374–380.
Effect of antler growth period on the chemical composition of velvet antler in sika deer (Cervus nippon).Crossref | GoogleScholarGoogle Scholar |

Jeon BT, Cheong SH, Kim DH, Park JH, Park PJ, Sung SH, Thomas DG, Kim KH, Moon SH (2011) Effect of antler development stage on the chemical composition of velvet antler in elk (Cervus elaphus canadensis). Asian-Australasian Journal of Animal Sciences 24, 1303–1313.
Effect of antler development stage on the chemical composition of velvet antler in elk (Cervus elaphus canadensis).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2iu7bM&md5=15bee4dd5837c7692167271ca690e4f4CAS |

Jeon BT, Kim KH, Cheong SH, Kang SK, Park PJ, Kim DH, Jung HS, Park JH, Thomas DG, Moon SH (2012) Effects of growth stage and position within the beam in the structure and chemical composition of sika deer (Cervus nippon) antlers. Animal Production Science 52, 51–57.
Effects of growth stage and position within the beam in the structure and chemical composition of sika deer (Cervus nippon) antlers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotVensg%3D%3D&md5=26b727706046898802c042754902b543CAS |

Johnson HE, Bleich VC, Krausman PR (2007) Mineral deficiencies in tule elk, Owens Valley, California. Journal of Wildlife Diseases 43, 61–74.
Mineral deficiencies in tule elk, Owens Valley, California.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFaitrw%3D&md5=ad516d8cd76c6e64fe27355cf56befe7CAS | 17347394PubMed |

Kierdorf U, Bartos L (1999) Treatment of the growing pedicle with retinoic acid increased the size of first antlers in fallow deer (Dama dama L.). Comparative Biochemistry and Physiology. Part C, Pharmacology, Toxicology & Endocrinology 124, 7–9.
Treatment of the growing pedicle with retinoic acid increased the size of first antlers in fallow deer (Dama dama L.).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c%2FksVansQ%3D%3D&md5=447f79da13b8eea1bac2b5ec543c2ef7CAS |

Kierdorf H, Kierdorf U (2000) Comparative analysis of the lead content of roe deer antlers from different regions in North Rhine–Westphalia (Germany) during the period 1990–1999. Zeitschrift fur Jagdwissenschaft 46, 270–278.

Kierdorf H, Kierdorf U (2001) Reconstruction of temporal trends in environmental pollution with fluorine and lead in the region Iserlohn/Hemer CM, (Markischer Kreis, Germany) by analyses of roe deer antlers. Zeitschrift fur Jagdwissenschaft 47, 201–210.

Kruuk LEB, Slate J, Pemberton JM, Brotherstone S, Guinness F, Clutton-Brock T (2002) Antler size in red deer: Heritability and selection but no evolution. Evolution 56, 1683–1695.
Antler size in red deer: Heritability and selection but no evolution.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38vpt1Cqsg%3D%3D&md5=893542b1bbeeb65ec63e89d3b7a32099CAS |

Landete-Castillejos T, Garcia A, Gallego L (2007a) Body weight, early growth and antler size influence antler bone mineral composition of Iberian red deer (Cervus elaphus hispanicus). Bone 40, 230–235.
Body weight, early growth and antler size influence antler bone mineral composition of Iberian red deer (Cervus elaphus hispanicus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12ktrvE&md5=d7c3279feb378f9a21394541c13cd9eaCAS | 16949898PubMed |

Landete-Castillejos T, Estevez JA, Martínez A, Ceacero F, Garcia A, Gallego L (2007b) Does chemical composition of antler bone reflect the physiological effort made to grow it? Bone 40, 1095–1102.
Does chemical composition of antler bone reflect the physiological effort made to grow it?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtVaksbs%3D&md5=04545d7a280521cf8455323408147773CAS | 17239669PubMed |

Landete-Castillejos T, Currey JD, Estevez JA, Fierro Y, Calatayud A, Ceacero F, Garcia AJ, Gallego L (2010) Do drastic weather effects on diet influence changes in chemical composition, mechanical properties and structure in deer antlers? Bone 47, 815–825.
Do drastic weather effects on diet influence changes in chemical composition, mechanical properties and structure in deer antlers?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFClsb3K&md5=6d4438eea2b5396ab6d894e4c7e7122bCAS | 20673821PubMed |

Landete-Castillejos T, Currey JD, Ceacero F, García AJ, Gallego L, Gomez S (2012) Does nutrition affect bone porosity and mineral tissue distribution in deer antlers? The relationship between histology, mechanical properties and mineral composition. Bone 50, 245–254.
Does nutrition affect bone porosity and mineral tissue distribution in deer antlers? The relationship between histology, mechanical properties and mineral composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Clsw%3D%3D&md5=4e855adbcf1af048a95edf8bf313b6acCAS | 22071000PubMed |

Laven RA, Wilson PR (2011) Possible subclinical hepatopathy after copper supplementation in farmed red deer. New Zealand Veterinary Journal 59, 197–200.
Possible subclinical hepatopathy after copper supplementation in farmed red deer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFGms7s%3D&md5=7426ffce2294e178965c36771f71297fCAS | 21660850PubMed |

Lehoczki R, Erdelyi K, Sonkoly K, Szemethy L, Csányi S (2011) Iodine distribution in the environment as a limiting factor for roe deer antler development. Biological Trace Element Research 139, 168–176.
Iodine distribution in the environment as a limiting factor for roe deer antler development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVCjuw%3D%3D&md5=b1d08e32b60643f64a9c69b1081e9a1bCAS | 20195916PubMed |

Li C, Suttie JM (1996) Histological examination of the antlerogenic region of red deer (Cervus elaphus) hummels. New Zealand Veterinary Journal 44, 126–130.
Histological examination of the antlerogenic region of red deer (Cervus elaphus) hummels.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2Mzntlygsw%3D%3D&md5=ed5dfea51ade6a870a52a058de88adebCAS | 16031913PubMed |

Lincoln GA (1972) The role of antlers in the behaviour of red deer. The Journal of Experimental Zoology 182, 233–249.
The role of antlers in the behaviour of red deer.Crossref | GoogleScholarGoogle Scholar |

Mauch M, Currey JD, Sedman AJ (1992) Creep fracture in bones with different stiffnesses. Journal of Biomechanics 25, 11–16.
Creep fracture in bones with different stiffnesses.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK387ivFersQ%3D%3D&md5=1832fe580f9d754fd5d4f8bb4199ec1bCAS | 1733979PubMed |

McDonald CG, Demarais S, Campbell TA, Janssen HF, Allen VG, Kelley AM (2005) Physical and chemical characteristics of antlers and antler breakage in white-tailed deer. The Southwestern Naturalist 50, 356–362.
Physical and chemical characteristics of antlers and antler breakage in white-tailed deer.Crossref | GoogleScholarGoogle Scholar |

Mendoza-Nazar P, Mendoza-Martinez DG, Herrera-Haro J, Ruiz-Sesma B, Bárcena-Gama R, Tarango-Arámbula L (2012) Effect of ruminally protected methionine on body weight gain and growth of antlers in red deer (Cervus elaphus) in the humid tropics. Tropical Animal Health and Production 44, 681–684.
Effect of ruminally protected methionine on body weight gain and growth of antlers in red deer (Cervus elaphus) in the humid tropics.Crossref | GoogleScholarGoogle Scholar | 21847713PubMed |

Miller KV, Marchinton RL, Beckwith JR, Bush PB (1985) Variations in density and chemical composition of white-tailed deer antlers. Journal of Mammalogy 66, 693–701.
Variations in density and chemical composition of white-tailed deer antlers.Crossref | GoogleScholarGoogle Scholar |

Moen R, Pastor J (1998) Simulating antler growth and energy, nitrogen, calcium and phosphorus metabolism in caribou. Rangifer 18, 85–97.
Simulating antler growth and energy, nitrogen, calcium and phosphorus metabolism in caribou.Crossref | GoogleScholarGoogle Scholar |

Moonga BS, Dempster DW (1995) Zinc is a potent inhibitor of osteoblastic bone resorption in vitro. Journal of Bone and Mineral Research 10, 453–457.
Zinc is a potent inhibitor of osteoblastic bone resorption in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmvVWnsLY%3D&md5=52bbf19e3ed6430cd05d0ad35a30b0a6CAS | 7785467PubMed |

Moore GH, Littlejohn RP, Cowie GM (1988) Liveweights, growth rates, and antler measurements of farmed red deer stags and their usefulness as predictors of performance. New Zealand Journal of Agricultural Research 31, 285–291.
Liveweights, growth rates, and antler measurements of farmed red deer stags and their usefulness as predictors of performance.Crossref | GoogleScholarGoogle Scholar |

Muir PD, Sykes AR (1988) Effect of winter nutrition on antler development in red deer (Cervus elaphus): a field study. New Zealand Journal of Agricultural Research 31, 145–150.
Effect of winter nutrition on antler development in red deer (Cervus elaphus): a field study.Crossref | GoogleScholarGoogle Scholar |

Muir PD, Sykes AR, Barrell GK (1987a) Growth and mineralization of antlers in red deer (Cervus elaphus). New Zealand Journal of Agricultural Research 30, 305–315.
Growth and mineralization of antlers in red deer (Cervus elaphus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhvVChtrY%3D&md5=0f128deab59b7225c85887026f16a669CAS |

Muir PD, Sykes AR, Barrell GK (1987b) Calcium metabolism in red deer (Cervus elaphus) offered herbages during antlerogenesis: kinetic and stable balance studies. Journal of Agricultural Science. Cambridge 109, 357–364.
Calcium metabolism in red deer (Cervus elaphus) offered herbages during antlerogenesis: kinetic and stable balance studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXjs1GgsQ%3D%3D&md5=c2b1063ae1695d2934ae3f667b92ccc1CAS |

Mysterud A, Meisingset E, Langvatn R, Yoccoz NG, Stenseth NC (2005) Climate-dependent allocation of resources to secondary sexual traits in red deer. Oikos 111, 245–252.
Climate-dependent allocation of resources to secondary sexual traits in red deer.Crossref | GoogleScholarGoogle Scholar |

Nygren T, Pusenius J, Tiilikainen R, Korpelainen J (2007) Moose antler type polymorphism: age and weight dependent phenotypes and phenotype frequencies in space and time. Annales Zoologici Fennici 44, 445–461.

Puttoo M, Dryden GMcL, McCosker JE (1998) Performance of weaned rusa (Cervus timorensis) deer given concentrates of varying protein content with sorghum hay. Australian Journal of Experimental Agriculture 38, 33–39.
Performance of weaned rusa (Cervus timorensis) deer given concentrates of varying protein content with sorghum hay.Crossref | GoogleScholarGoogle Scholar |

Schmidt KT, Stien A, Albon SD, Guinness FE (2001) Antler length of yearling red deer is determined by population density, weather and early life-history. Oecologia 127, 191–197.
Antler length of yearling red deer is determined by population density, weather and early life-history.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2cvptlCksw%3D%3D&md5=9ada06d1489d62b84465c3b2bd2c0318CAS | 24577649PubMed |

Schroder J (1983) Antler and body weight allometry in red deer: a comparison of statistical estimators. Biometrische Zeitschrift 25, 669–680.

Schultz SR, Johnson MK, Feagley SE, Southern LL, Ward TL (1994) Mineral-content of Louisiana white-tailed deer. Journal of Wildlife Diseases 30, 77–85.
Mineral-content of Louisiana white-tailed deer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXivFCksb0%3D&md5=5f894595bf469b6e356e6ffede65e776CAS | 8151828PubMed |

Scribner KT, Smith MH, Johns PE (1989) Environmental and genetic components of antler growth in white-tailed deer. Journal of Mammalogy 70, 284–291.
Environmental and genetic components of antler growth in white-tailed deer.Crossref | GoogleScholarGoogle Scholar |

Shi ZD, Barrell GK (1992) Requirement of thyroid function for the expression of seasonal reproductive and related changes in red deer (Cervus elaphus) stags. Journal of Reproduction and Fertility 94, 251–259.
Requirement of thyroid function for the expression of seasonal reproductive and related changes in red deer (Cervus elaphus) stags.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhvVygurk%3D&md5=169c1f5f835f4d7f30632094786178bcCAS | 1552486PubMed |

Sinclair SE (1999) ‘Nutritional management of red and rusa deer in Queensland.’ Deer Industry Development Working Paper No. 3. (Queensland Department of Primary Industries: Brisbane)

Smith BL (1998) Antler size and winter mortality of elk: effects of environment, birth year, and parasites. Journal of Mammalogy 79, 1038–1044.
Antler size and winter mortality of elk: effects of environment, birth year, and parasites.Crossref | GoogleScholarGoogle Scholar |

Sunwoo HH, Nakano T, Hudson RJ, Sim JS (1995) Chemical composition of antlers from wapiti (Cervus elaphus). Journal of Agricultural and Food Chemistry 43, 2846–2849.
Chemical composition of antlers from wapiti (Cervus elaphus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXovFSktbo%3D&md5=8218af5435748936ba5d8acf6da3d5adCAS |

Suttie JM, Fennessy PF, Crosbie SF, Corson ID, Laas FJ, Elgar HJ, Lapwood KR (1991) Temporal changes in LH and testosterone and their relationship with the 1st antler in red deer (Cervus elaphus) stags from 3 to 15 months of age. The Journal of Endocrinology 131, 467–474.
Temporal changes in LH and testosterone and their relationship with the 1st antler in red deer (Cervus elaphus) stags from 3 to 15 months of age.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XpsFE%3D&md5=45f4a87f87e22db4fedacae73187bc5dCAS | 1783890PubMed |

Suttie JM, Fennessy PF, Lapwood KR, Corson ID (1995) Role of steroids in antler growth of red deer stags. The Journal of Experimental Zoology 271, 120–130.
Role of steroids in antler growth of red deer stags.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkslaju78%3D&md5=ec16de57ea62c91e801273d8e0b885feCAS | 7884386PubMed |

Ungerfeld R, Villagran M, Gonzalez-Pensado S (2011) Antler weight and body weight relationship in adult and young pampas deer (Ozotoceros bezoarticus) males. North-Western Journal of Zoology 7, 208–212.

van den Berg GHJ, Garrick DJ (1997) Inheritance of adult velvet antler weights and live weights in farmed red deer. Livestock Production Science 49, 287–295.
Inheritance of adult velvet antler weights and live weights in farmed red deer.Crossref | GoogleScholarGoogle Scholar |

Walker IH, Fraser R, Mason A, Wilson PR (1997). Trace element observations from commercial deer farms: Richmond–Wrightson Deer Performance Project data. In ‘Proceedings of a deer course for veterinarians. No. 14’. (Eds C Crickett, PR Wilson) pp. 219–227. (Deer Branch of the New Zealand Veterinary Association: Palmerston North, New Zealand)

Yamaguchi M, Oisgi H, Suketa Y (1988) Zinc stimulation of bone protein synthesis in tissue culture. Activation of aminoacyl–tRNA synthetase. Biochemical Pharmacology 37, 4075–4080.
Zinc stimulation of bone protein synthesis in tissue culture. Activation of aminoacyl–tRNA synthetase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXitFGhug%3D%3D&md5=3265b0ec3afffb2c143653aa1a0731c4CAS | 2461201PubMed |

Zioupos P, Xiao TW, Currey JD (1996) Experimental and theoretical quantification of the development of damage in fatigue tests of bone and antler. Journal of Biomechanics 29, 989–1002.
Experimental and theoretical quantification of the development of damage in fatigue tests of bone and antler.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28vhsVegtQ%3D%3D&md5=c87229716cfb91a8a4a09c2f8051b4f1CAS | 8817365PubMed |