Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

Effects of supplementing a milk replacer with sodium butyrate or tributyrin on performance and metabolism of Holstein calves

G. Araujo A , M. Terré A , A. Mereu B , I. R. Ipharraguerre B and A. Bach A C D
+ Author Affiliations
- Author Affiliations

A Department of Ruminant Production, IRTA, Torre Marimon, 08140 Caldes de Montbui, Spain.

B Lucta SA, 08179 Montornès del Vallès, Spain.

C ICREA, Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain.

D Corresponding author. Email: alex.bach@icrea.cat

Animal Production Science 56(11) 1834-1841 https://doi.org/10.1071/AN14930
Submitted: 6 November 2014  Accepted: 8 June 2015   Published: 27 July 2015

Abstract

The effects of butyrate supplementation in diets of calves are inconsistent in the literature. Fifty-one Holstein calves (45.7 ± 5.8 kg of bodyweight and 11.8 ± 3.1 days of age; mean ± s.d.) were randomly allocated to three treatments to assess the effects of supplementing the milk replacer at 0.3% dry matter with butyrate in the form of sodium butyrate or tributyrin compared with no supplementation (CTR). Calves were fed 4 L/day of milk replacer (25% crude protein and 19.2% ether extract) and starter feed (20% crude protein and 3.8% ether extract) ad libitum over a period of 6 weeks. Individual intake was measured daily and bodyweight and blood β-hydroxybutyrate, glucose-like peptide-1, glucose and insulin were measured fortnightly. A glucose tolerance test was performed on Days 0 and 35 of the study. No effects of butyrate supplementation were found on starter and total dry matter intake. CTR calves had greater average daily gain than tributyrin calves. CTR calves tended to have greater final bodyweight than tributyrin and sodium butyrate calves. Gain : feed ratio tended to be greater for CTR calves. There were no differences in plasma glucose, insulin, β-hydroxybutyrate and glucose-like peptide-1 concentrations throughout among treatments the study. During the glucose tolerance test, no differences on insulin sensitivity were found among treatments. In conclusion, no apparent advantages of supplementing milk replacer with sodium butyrate or tributyrin were found on performance and glucose metabolism in calves.

Additional keyword: growth.


References

Anand RS, Black AL (1970) Species difference in the glucogenic behavior of butyrate in lactating ruminants. Comparative Biochemistry and Physiology 33, 129–142.
Species difference in the glucogenic behavior of butyrate in lactating ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXhtF2htbs%3D&md5=96c8355b78e0f5ab6fe2ad57c7c5aeb8CAS | 5440924PubMed |

AOAC (1990) Official Methods of Analysis Association of Official Analytical Chemists. Arlington, VA.

Bach A, Domingo L, Montoro C, Terré M (2013) Short communication: insulin responsiveness is affected by the level of milk replacer offered to young calves. Journal of Dairy Science 96, 4634–4637.
Short communication: insulin responsiveness is affected by the level of milk replacer offered to young calves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnt1antb0%3D&md5=22215aed97f5a858ac17b47dc46aaed0CAS | 23660138PubMed |

Baldwin RL, McLeod KR, Klotz JL, Heitmann RN (2004) Rumen development, intestinal growth and hepatic metabolism in the pre- and postweaning ruminant. Journal of Dairy Science 87, E55–E65.
Rumen development, intestinal growth and hepatic metabolism in the pre- and postweaning ruminant.Crossref | GoogleScholarGoogle Scholar |

Bergman RN (1989) Towards physiological understanding of glucose tolerance. Minimal-model approach. Diabetes 38, 1512–1527.
Towards physiological understanding of glucose tolerance. Minimal-model approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXjtVKqtg%3D%3D&md5=991a13616dd5470178aba6282c835f12CAS | 2684710PubMed |

Chen ZX, Breitman TR (1994) Tributyrin: a product of butyric acid for potential clinical application in differentiation therapy. Cancer Research 54, 3494–3499.

Christoffersen B, Ribel U, Raun K, Golozoubova V, Pacini G (2009) Evaluation of different methods for assessment of insulin sensitivity in Göttingen minipigs: introduction of a new, simpler method. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 297, R1195–R1201.
Evaluation of different methods for assessment of insulin sensitivity in Göttingen minipigs: introduction of a new, simpler method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlent7jF&md5=ecba604e3775a4953dbf29ff043dd13dCAS | 19710388PubMed |

Daniel P, Braziek M, Cerutti I, Pieri F, Tardivel I, Desmet G, Baillets J, Chany C (1989) Pharmacokinetic study of butyric acid administered in vivo as sodium and arginine butyrate salts. Clinica Chimica Acta 181, 255–263.
Pharmacokinetic study of butyric acid administered in vivo as sodium and arginine butyrate salts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksV2rtbg%3D&md5=38c77812ef778f7814fb362df8aacfedCAS |

Egorin MJ, Yuan ZM, Sentz DL, Plaisance K, Eiseman JL (1999) Plasma pharmacokinetics of butyrate after intravenous administration of sodium butyrate or oral administration of tributyrin or sodium butyrate to mice and rat. Cancer Chemotherapy and Pharmacology 43, 445–453.
Plasma pharmacokinetics of butyrate after intravenous administration of sodium butyrate or oral administration of tributyrin or sodium butyrate to mice and rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisFGgs7w%3D&md5=18b6cd6d87ea38e376af0065723cac73CAS | 10321503PubMed |

Ferreira LS, Bittar CMM (2011) Performance and plasma metabolites of dairy calves fed starter containing sodium butyrate, calcium propionate or sodium monensin. Animal 5, 239–245.
Performance and plasma metabolites of dairy calves fed starter containing sodium butyrate, calcium propionate or sodium monensin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFKjsA%3D%3D&md5=28410967f894db92e3b8cd405e5d87d3CAS | 22440769PubMed |

Freeland KR, Wilson C, Wolever TMS (2010) Adaptation of colonic fermentation and glucagon-like peptide-1 secretion with increased wheat fibre intake for 1 year in hyperinsulinaemic human subjects. British Journal of Nutrition 103, 82–90.
Adaptation of colonic fermentation and glucagon-like peptide-1 secretion with increased wheat fibre intake for 1 year in hyperinsulinaemic human subjects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Smt73I&md5=78886cd64a91e9eec59c284175ca8061CAS | 19664300PubMed |

Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, Cefalu WT, Ye J (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58, 1509–1517.
Butyrate improves insulin sensitivity and increases energy expenditure in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1CqtbY%3D&md5=18907385ca28332581b47f3f951498a9CAS | 19366864PubMed |

Górka P, Kowalski ZM, Pietrzak P, Kotunia A, Jagusiak W, Zabielski R (2011a) Is rumen development in newborn calves affected by different liquid feeds and small intestine development? Journal of Dairy Science 94, 3002–3013.
Is rumen development in newborn calves affected by different liquid feeds and small intestine development?Crossref | GoogleScholarGoogle Scholar | 21605770PubMed |

Górka P, Kowalski ZM, Pietrzak P, Kotunia A, Jagusiak W, Holst JJ, Guilloteau P, Zabielski R (2011b) Effect of method of delivery of sodium butyrate on rumen development in newborn calves. Journal of Dairy Science 94, 5578–5588.
Effect of method of delivery of sodium butyrate on rumen development in newborn calves.Crossref | GoogleScholarGoogle Scholar | 22032381PubMed |

Górka P, Pietrzak P, Kotunia A, Zabielski R, Kowalski ZM (2014) Effect of method of delivery of sodium butyrate on maturation of the small intestine in newborn calves. Journal of Dairy Science 97, 1026–1035.
Effect of method of delivery of sodium butyrate on maturation of the small intestine in newborn calves.Crossref | GoogleScholarGoogle Scholar | 24342681PubMed |

Guilloteau P, Rome V, Le Normand L, Savary G, Zabielski R (2004) Is Na-butyrate a growth factor in the preruminant calf? Preliminary results. Journal of Animal and Feed Sciences 13, 393–396.

Guilloteau P, Zabielski R, David JC, Blum JW, Morisset JA, Biernat M, Woliski J, Laubitz D, Hamon Y (2009) Sodium butyrate as a growth promoter in milk replacer formula for young calves. Journal of Dairy Science 92, 1038–1049.
Sodium butyrate as a growth promoter in milk replacer formula for young calves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivVaktLo%3D&md5=b2b702e94cb53e3d38e5fb73f3731ad5CAS | 19233797PubMed |

Guilloteau P, Savary G, Jaguelin-Peyrault Y, Romé V, Le Normand L, Zabielski R (2010) Dietary sodium butyrate supplementation increases digestibility and pancreatic secretion in young milk-fed calves. Journal of Dairy Science 93, 5842–5850.
Dietary sodium butyrate supplementation increases digestibility and pancreatic secretion in young milk-fed calves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1Kis7g%3D&md5=a52b638ad404a5297b6ec7a73e3a2e12CAS | 21094757PubMed |

Hill TM, Aldrich JM,, Schlotterbeck RL, Bateman HG, (2007a) Effects of changing the fat and fatty acid composition of milk replacers fed to neonatal calves. The Professional Animal Scientist 23, 135–143.

Hill TM, Aldrich JM,, Schlotterbeck RL, Bateman HG, (2007b) Amino acids, fatty acids, and fat sources for calf milk replacers. The Professional Animal Scientist 23, 401–408.

Hill TM, Aldrich JM,, Schlotterbeck RL, Bateman HG, (2007c) Effects of changing the fatty acid composition of calf starters. The Professional Animal Scientist 23, 665–671.

Hou YQ, Liu YL, Hu J, Shen WH (2006) Effects of lactitol and tributyrin on growth performance, small intestinal morphology and enzyme activity in weaned pigs. Asian-Australasian Journal of Animal Sciences 19, 1470–1477.
Effects of lactitol and tributyrin on growth performance, small intestinal morphology and enzyme activity in weaned pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVygtbrN&md5=74a8fbefd248c58c33093d4864b46b93CAS |

Kamalu TN, Trenkle AH (1978) Postprandial changes in plasma insulin, plasma glucose, and plasma free fatty acids of milk-fed calves. Nutrition Reports International 18, 243–248.

Kato S, Sato K, Chida H, Roh S, Ohwada S, Sato S, Guilloteau P, Katoh K (2011) Effects of Na-butyrate supplementation in milk formula on plasma concentrations of GH and insulin, and on rumen papilla development in calves. The Journal of Endocrinology 211, 241–248.
Effects of Na-butyrate supplementation in milk formula on plasma concentrations of GH and insulin, and on rumen papilla development in calves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFyqt7fF&md5=a5bb1b9caf6148edf8e722c15eef1be4CAS | 21911440PubMed |

Lin HV, Frassetto A, Kowalik EJ,, Nawrocki AR, Lu MM, Kosinski JR, Hubert JA, Szeto D, Yao X, Forrest G, Marsh DJ (2012) Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One 7, e35240
Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvF2gtrc%3D&md5=75355f4ad3d84e9b29147bcd0913533dCAS | 22506074PubMed |

Manzanilla EG, Nofrarías M, Anguita M, Castillo M, Perez JF, Martín-Orúe SM, Kamel C, Gasa J (2006) Effects of butyrate, avilamycin, and a plant extract combination on the intestinal equilibrium of early-weaned pigs. Journal of Animal Science 84, 2743–2751.
Effects of butyrate, avilamycin, and a plant extract combination on the intestinal equilibrium of early-weaned pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVart7fF&md5=321a3d4e7a6d021bd0422f66e9a48552CAS | 16971576PubMed |

Miller AA, Kurschel E, Osieka R, Schmidt CG (1987) Clinical pharmacology of sodium butyrate in patients with acute leukemia. European Journal of Cancer & Clinical Oncology 23, 1283–1287.
Clinical pharmacology of sodium butyrate in patients with acute leukemia.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c%2FlsFahsQ%3D%3D&md5=afd85ebcc630738e97c4991a38218308CAS |

Parodi PW (1997) Cow’s milk fat components as potential anticarcinogenic agents. The Journal of Nutrition 6, 1055–1060.

Piva A, Prandini A, Fiorentini L, Morlacchini M, Galvano F, Luchansky JB (2002) Tributyrin and lactitol synergistically enhanced the trophic status of the intestinal mucosa and reduced histamine levels in the gut of nursery pigs. Journal of Animal Science 80, 670–680.

Säemann MD, Böhmig GA, Osterreicher CH, Burtscher H, Parolini O, Diakos C, Stöckl J, Hörl WM, Zlabinger GJ (2000) Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production. The FASEB Journal 14, 2380–2382.

SAS Institute Inc. (2011) ‘SAS/Stat® 9.3 user’s guide.’ (SAS Institute Inc.: Cary, NC)

Shah M, Vella A (2014) Effects of GLP-1 on appetite and weight. Reviews in Endocrine & Metabolic Disorders 15, 181–187.
Effects of GLP-1 on appetite and weight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnslGrtbs%3D&md5=a5eb28bbb8e702589cdef2ce4e6c8552CAS |

Ślusarczyk K, Strzetelski JA, Furgał-Dierżuk I (2010) The effect of sodium butyrate on calf growth and serum level of β-hydroxybutyric acid. Journal of Animal and Feed Sciences 19, 348–357.

Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble FM (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61, 364–371.
Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltVOlt7Y%3D&md5=e453aae827084865ee59a5d296adc273CAS | 22190648PubMed |

van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 3583–3597.
Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38%2FnvVCltA%3D%3D&md5=e5c1ebe000070887297cc2a8c330cfc1CAS | 1660498PubMed |

Vieira EL, Leonel AJ, Sad AP, Beltrão NR, Costa TF, Ferreira TM, Gomes-Santos AC, Faria AM, Peluzio MC, Cara DC, Alvarez-Leite JI (2012) Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis. The Journal of Nutritional Biochemistry 23, 430–436.
Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvVShtbw%3D&md5=664995200619b17a596c5c904b644bc4CAS | 21658926PubMed |

Vinolo MA, Rodrigues HG, Hatanaka E, Sato FT, Sampaio SC, Curi R (2011) Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. The Journal of Nutritional Biochemistry 22, 849–855.
Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVaju7zF&md5=c1a43d69b055a7e7cfdf690ce9850374CAS | 21167700PubMed |

Vinolo MA, Rodrigues HG, Festuccia WT, Crisma AR, Alves VS, Martins AR, Amaral CL, Fiamoncini J, Hirabara SM, Sato FT, Fock RA, Malheiros G, dos Santos MF, Curi R (2012) Tributyrin attenuates obesity-associated inflammation and insulin resistance in high-fat-fed mice. American Journal of Physiology. Endocrinology and Metabolism 303, E272–E282.
Tributyrin attenuates obesity-associated inflammation and insulin resistance in high-fat-fed mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Olu7fL&md5=2be14183635fecbe1956c7761e2f96d4CAS | 22621868PubMed |