Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

Prediction of nutrient flows with potential impacts on the environment in a rabbit farm: a modelling approach

Bertrand Méda A G , Laurence Fortun-Lamothe B C D and Mélynda Hassouna E F
+ Author Affiliations
- Author Affiliations

A INRA, UR83 Recherches Avicoles, F-37380 Nouzilly, France.

B INRA, UMR1388 Génétique Physiologie et Systèmes d’Elevage, F-31326 Castanet-Tolosan, France.

C Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, F-31076 Toulouse, France.

D Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, F-31326 Castanet-Tolosan, France.

E INRA, UMR1069 Sol Agro et hydrosystème Spatialisation, F-35000 Rennes, France.

F Agrocampus Ouest, F-35000 Rennes, France.

G Corresponding author. Email: bertrand.meda@tours.inra.fr

Animal Production Science 54(12) 2042-2051 https://doi.org/10.1071/AN14530
Submitted: 30 April 2014  Accepted: 13 July 2014   Published: 15 October 2014

Abstract

To face the increasing demand for animal products throughout the world, livestock-farming systems have been intensified. This intensification has proven to be economically effective but is noted for its negative impact on the environment through the production of ammonia (NH3) and the greenhouse gases nitrous oxide (N2O) and methane. In this context, dynamic models are useful tools to evaluate the effects of farming practice on nutrient flows and losses to the environment. This paper presents the development of a model simulating the flows of nitrogen (N) and phosphorus (P) in a rabbit production farm. The model is comprised of two submodels. The first submodel simulates the number of animals in the farm (births, deaths, culling of does/fatteners) and their respective performances (growth, feed intake, milk production). The second one simulates the excretion of N and P for each animal category using a mass-balance approach between intake (feed and/or milk intake) and exports (body deposition, milk production, gestation). Specific emission factors are then applied to the excreted N amounts to estimate total N, NH3 and N2O losses in the housing unit and during manure storage. Methane emissions from enteric fermentations and manure are also estimated. A simulation example based on French technico-economic data illustrates how the model could be used to study the dynamics of animal populations within the system and of nutrient flows. Finally, there is a need for new knowledge (experimental data) to improve the model and help design more sustainable rabbit production systems by identifying best practices that minimise environmental impacts.

Additional keywords: ammonia, excretion, gas emission, greenhouse gas, manure.


References

Belenguer A, Fondevila M, Balcells J, Abecia L, Lachica M, Carro MD (2011) Methanogenesis in rabbit caecum as affected by the fermentation pattern: in vitro and in vivo measurements. World Rabbit Science 19, 75–83.
Methanogenesis in rabbit caecum as affected by the fermentation pattern: in vitro and in vivo measurements.Crossref | GoogleScholarGoogle Scholar |

Bouwman AF, Van Vuuren DP, Derwent RG, Posch M (2002) A global analysis of acidification and eutrophication of terrestrial ecosystems. Water, Air, and Soil Pollution 141, 349–382.
A global analysis of acidification and eutrophication of terrestrial ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xpt1altLk%3D&md5=2fa3880433fcb7c371a253c80642c81bCAS |

Calvet S, Estellés F, Hermida B, Blumetto O, Torres AG (2008) Experimental balance to estimate efficiency in the use of nitrogen in rabbit breeding. World Rabbit Science 16, 205–211.

Calvet S, Cambra-López M, Estellés F, Torres AG (2011) Characterization of the indoor environment and gas emissions in rabbit farms. World Rabbit Science 19, 49–61.
Characterization of the indoor environment and gas emissions in rabbit farms.Crossref | GoogleScholarGoogle Scholar |

Chardon X, Rigolot C, Baratte C, Espagnol S, Raison C, Martin-Clouaire R, Rellier J-P, Le Gall A, Dourmad JY, Piquemal B, Leterme P, Paillat JM, Delaby L, Garcia F, Peyraud JL, Poupa JC, Morvan T, Faverdin P (2012) MELODIE: a whole-farm model to study the dynamics of nutrients in dairy and pig farms with crops. Animal 6, 1711–1721.
MELODIE: a whole-farm model to study the dynamics of nutrients in dairy and pig farms with crops.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Gis7zE&md5=587d0297f9f51c90a15a61072b527c01CAS | 22717192PubMed |

CORPEN (1999) Estimation des rejets d’azote et de phosphore par les élevages cunicoles Comité d’Orientation pour des Pratiques Agricoles Respectueuses de l’Environnement.

EEA (2013) ‘EMEP/EEA air pollutant emission inventory guidebook 2013 – technical chapter 3.B manure management.’ (European Environment Agency: Copenhagen) Available at http://www.eea.europa.eu/publications/emep-eea-guidebook-2013 [Verified 12 September 2014]

European Commission (2003) Integrated Pollution Prevention and Control (IPPC) – reference document on best available techniques for intensive rearing of poultry and pigs. (European Commission: Brussels) Available at http://eippcb.jrc.ec.europa.eu/reference/BREF/irpp_bref_0703.pdf [Verified 12 September 2014]

FAO (2006) ‘Livestock long shadow. Environmental issues and options.’ (FAO: Rome)

Ferrer P, Cambra-López M, Borrás M, Cerisuelo A, Moset V (2011) Evaluación in vitro de la actividad metanogenica y caracterización físico-quimica de la gallinaza y el estiercol de conejo. In ‘XIV jornadas sobre producción animal, Tomo II, Zaragoza, Spain, 17–18 May’. (Ed. AIDA) pp. 860–862.

Feugier A, Fortun-Lamothe L (2006) Extensive reproductive rhythm and early weaning improve body condition and fertility of rabbit does. Animal Research 55, 459–470.
Extensive reproductive rhythm and early weaning improve body condition and fertility of rabbit does.Crossref | GoogleScholarGoogle Scholar |

Fortun L, Prunier A, Lebas F (1993) Effects of lactation on fetal survival and development in rabbit does mated shortly after parturition. Journal of Animal Science 71, 1882–1886.

Franz R, Soliva CR, Kreuzer M, Hummel J, Clauss M (2011) Methane output of rabbits (Oryctolagus cuniculus) and guinea pigs (Cavia porcellus) fed a hay-only diet: implications for the scaling of methane production with body mass in non-ruminant mammalian herbivores. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology 158, 177–181.
Methane output of rabbits (Oryctolagus cuniculus) and guinea pigs (Cavia porcellus) fed a hay-only diet: implications for the scaling of methane production with body mass in non-ruminant mammalian herbivores.Crossref | GoogleScholarGoogle Scholar |

Hassouna M, Robin P, Charpiot A, Edouard N, Méda B (2013) Infrared photoacoustic spectroscopy in animal houses: effect of non-compensated interferences on ammonia, nitrous oxide and methane air concentrations. Biosystems Engineering 114, 318–326.
Infrared photoacoustic spectroscopy in animal houses: effect of non-compensated interferences on ammonia, nitrous oxide and methane air concentrations.Crossref | GoogleScholarGoogle Scholar |

IPCC (2006) ‘2006 IPCC guidelines for national greenhouse gas inventories. Prepared by the National Greenhouse Gas Inventories Programme. In ‘Agriculture, forestry and other land use. Vol. 4. Chapter 10. Emissions from livestock and manure management’. (Eds HS Eggleston, L Buendia, K Miwa, T Ngara, K Tanabe) (IGES: Japan)

IPCC 2007 ‘Climate change 2007: synthesis report.’ (Intergovernmental Panel on Climate Change: Geneva)

ITAVI (2013) ‘Gestion technico-economique des éleveurs de lapins de chair: programmes RENACEB et RENALAP – résultats 2012.’ (ITAVI: Paris).

Kristensen HH, Wathes CM (2000) Ammonia and poultry welfare: a review. World’s Poultry Science Journal 56, 235–245.
Ammonia and poultry welfare: a review.Crossref | GoogleScholarGoogle Scholar |

Levasseur P, Charles M, Le Bris B, Boulestreau AL, Landrain P, Athanase N (2007) Comparaison de méthodes d’estimation des rejets d’azote, de phosphore et de potassium en élevage de porc. In ‘39èmes Journées de la Recherche Porcine, Paris, France, 6–8 February’. (Ed. IFIP) pp. 1–6.

Maertens L (2009) Possibilities to reduce the feed conversion in rabbit production. In ‘Giornate di Coniglicoltura ASIC 2009. Forli, Italy, 2–3 April’. pp. 1–10.

Maertens L, Cavani C, Petracci M (2005) Nitrogen and phosphorus excretion on commercial rabbit farms: calculations based on the input–output balance. World Rabbit Science 13, 3–16.

Maertens L, Lebas F, Szendrö Z (2006) Rabbit milk: a review of quantity, quality and non-dietary affecting factors. World Rabbit Science 14, 205–230.

Marounek M, Fievez V, Mbanzamihigo L, Demeyer D, Maertens L (1999) Age and incubation time effects on in vitro caecal fermentation pattern in rabbits before and after weaning. Archives of Animal Nutrition 52, 195–201.

Méda B, Hassouna M, Aubert C, Robin P, Dourmad JY (2011) Influence of rearing conditions and manure management practices on ammonia and greenhouse gas emissions from poultry houses. World’s Poultry Science Journal 67, 441–456.
Influence of rearing conditions and manure management practices on ammonia and greenhouse gas emissions from poultry houses.Crossref | GoogleScholarGoogle Scholar |

Méda B, Robin P, Aubert C, Dourmad JY, Hassouna M (2012) MOLDAVI: a model to predict environmental and economic performances of broiler farming systems. 10th European IFSA symposium – producing and reproducing farming systems: new modes of organization for sustainable food systems of tomorrow, Aarhus, Denmark, 1–4 July. Available at http://www.ifsa2012.dk/downloads/WS6_4/Bretrand_Meda.pdf [Verified 12 September 2014]

Monteny GJ, Bannink A, Chadwick D (2006) Greenhouse gas abatement strategies for animal husbandry. Agriculture, Ecosystems & Environment 112, 163–170.
Greenhouse gas abatement strategies for animal husbandry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xktl2lsA%3D%3D&md5=30ce8bb5f06452b75f2b8b954e02539dCAS |

Nicodemus NCR, Garcia J, De Blas JC (2004) Performance response of doe rabbits to Toyocerin® (Bacillus cereus var. Toyoi) supplementation. World Rabbit Science 12, 109–118.
Performance response of doe rabbits to Toyocerin® (Bacillus cereus var. Toyoi) supplementation.Crossref | GoogleScholarGoogle Scholar |

Orengo J, Gidenne T (2007) Feeding behaviour and caecotrophy in the young rabbit before weaning: an approach by analysing the digestive contents. Applied Animal Behaviour Science 102, 106–118.
Feeding behaviour and caecotrophy in the young rabbit before weaning: an approach by analysing the digestive contents.Crossref | GoogleScholarGoogle Scholar |

Pascual JJ, Xiccato G, Fortun-Lamothe L (2006) Strategies for doe’s corporal condition improvement – relationship with litter viability and career length. In ‘Recent advances in rabbit sciences’. (Eds L Maertens, P Coudert) pp. 247–258. (Instituut voor Landbouwen Visserijonder (ILVO): Melle, Belgium)

Piattoni F, Demeyer D, Maertens L (1996) In vitro study of the age-dependent caecal fermentation pattern and methanogenesis in young rabbits. Reproduction, Nutrition, Development 36, 253–261.
In vitro study of the age-dependent caecal fermentation pattern and methanogenesis in young rabbits.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28zhs1ejsw%3D%3D&md5=d387c9ce7e54abc56e5405263c776af4CAS | 8766730PubMed |

Rigolot C, Espagnol S, Robin P, Hassouna M, Béline F, Paillat JM, Dourmad J-Y (2010) Modelling of manure production by pigs and NH3, N2O and CH4 emissions. Part II: effect of animal housing, manure storage and treatment practices. Animal 4, 1413–1424.
Modelling of manure production by pigs and NH3, N2O and CH4 emissions. Part II: effect of animal housing, manure storage and treatment practices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVCmtrY%3D&md5=1390d05dd2fb08a646506cabd9a33e37CAS | 22444661PubMed |

Rotz CA (2004) Management to reduce nitrogen losses in animal production. Journal of Animal Science 82, E119–E137.

Rotz CA, Corson MS, Dawn S, Chianese DS, Montes F, Hafner SD, Coiner CU (2012) ‘The Integrated Farm System Model: reference manual version 3.6.’ Available at http://ars.usda.gov/SP2UserFiles/Place/19020000/ifsmreference.pdf [Verified 12 September 2014]

Sise JA, Kerslake JI, Oliver MJ, Glennie S, Butler D, Behrent M, Fennessy PF, Campbell AW (2011) Development of a software model to estimate daily greenhouse gas emissions of pasture-fed ruminant farming systems. Animal Production Science 51, 60–70.
Development of a software model to estimate daily greenhouse gas emissions of pasture-fed ruminant farming systems.Crossref | GoogleScholarGoogle Scholar |

van Milgen J, Valancogne A, Dubois S, Dourmad JY, Sève B, Noblet J (2008) InraPorc: a model and decision support tool for the nutrition of growing pigs. Animal Feed Science and Technology 143, 387–405.
InraPorc: a model and decision support tool for the nutrition of growing pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXms1WjsLk%3D&md5=453649f2e8020269351ad476c6b5b9f4CAS |

Whyte RT (1993) Aerial pollutants and the health of poultry farmers. World’s Poultry Science Journal 49, 139–156.
Aerial pollutants and the health of poultry farmers.Crossref | GoogleScholarGoogle Scholar |

Xiccato G, Trocino A (2010) Energy and protein metabolism and requirements. In ‘Nutrition of the rabbit’. 2nd edn. (Eds C de Blas, J Wiseman) pp. 83–118. (CABI: Wallingford, UK)

Zened A, Meda B, Ponchant P, Wilfart A, Arroyo J, Gidenne T, Brachet A, Combes S, Fortun-Lamothe L (2013) Conséquences d’une restriction alimentaire chez le lapereau sevré sur les impacts environnementaux de la production de viande de lapin. In ‘15èmes Journées de la Recherche Cunicole. Le Mans, France, 19–20 November’. (Ed. ITAVI) pp. 141–144. (ITAVI: Paris)