Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

Transcriptome profiling of muscle by RNA-Seq reveals significant differences in digital gene expression profiling between Angus and Luxi cattle

G. F. Liu A , H. J. Cheng A , W. You A , E. L. Song A , X. M. Liu A and F. C. Wan A B
+ Author Affiliations
- Author Affiliations

A Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China.

B Corresponding author. Email: wanfc@sina.com

Animal Production Science 55(9) 1172-1178 https://doi.org/10.1071/AN14096
Submitted: 3 March 2014  Accepted: 16 July 2014   Published: 20 February 2015

Abstract

The development of massively parallel sequencing technologies enables the sequencing of total cDNA to identify unigene expression and to discover novel regions of transcription. Here, we report the first use of RNA sequencing (RNA-Seq) to find the digital gene expression profiles (DGEs) associated with the growth and development of muscle in Chinese Luxi and Angus beef cattle. More than 9 243 921 clean reads were found in samples of muscle tissue. We found 232 DGEs between Luxi cattle and Angus cattle (false discovery ratio ≤0.001 and |log2 ratio| ≥1). Among the DGEs, we determined that 147 genes were downregulated and 85 genes were upregulated. Gene Ontology and KEGG Pathway analyses were performed to analyse the biological role of the DGEs and determine their contribution to the differences seen in muscle growth and development between local Chinese Luxi cattle and the introduced Angus cattle. The results suggest that RNA-Seq is a useful tool for predicting differences in gene expression between Luxi and Angus beef cattle; moreover, our results provides unprecedented resolution of mRNAs that are expressed across the two breeds.

Additional keywords: bioinformatics analysis, meat quality.


References

Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Research 7, 986–995.

Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Annals of Statistics 29, 1165–1188.

Cánovas A, Rincon G, Islas-Trejo A, Wickramasinghe S (2010) SNP discovery in the bovine milk transcriptome using RNA-Seq technology. Mammalian Genome 21, 592–598.
SNP discovery in the bovine milk transcriptome using RNA-Seq technology.Crossref | GoogleScholarGoogle Scholar | 21057797PubMed |

Costa V, Angelini C, De Feis I, Ciccodicola A (2010) Uncovering the complexity of transcriptomes with RNA-Seq. Journal of Biomedicine & Biotechnology 2010, 1–19.
Uncovering the complexity of transcriptomes with RNA-Seq.Crossref | GoogleScholarGoogle Scholar |

Fang ZD, Cui XQ (2011) Design and validation issues in RNA-seq experiments. Briefings in Bioinformatics 12, 280–287.
Design and validation issues in RNA-seq experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvVOru74%3D&md5=8b4bb6105161fd24250b67712c673a1aCAS |

Gu Z, Eleswarapu S, Jiang H (2007) Identification and characterization of microRNAs from the bovine adipose tissue and mammary gland. FEBS Letters 581, 981–988.
Identification and characterization of microRNAs from the bovine adipose tissue and mammary gland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit12ht7s%3D&md5=95000322bc177bd6b349657a810e3e04CAS | 17306260PubMed |

Huang W, Khati H (2010) Comparison of transcriptomic landscapes of bovine embryos using RNA-Seq. BMC Genomics 11, 711–720.
Comparison of transcriptomic landscapes of bovine embryos using RNA-Seq.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVw%3D&md5=6c3c67a65be47150c78451db7f2b97f4CAS | 21167046PubMed |

Jäger M, Ott CE, Grünhagen J, Hecht J, Schell H, Mundlos S, Duda GN, Robinson PN, Lienau J (2011) Composite transcriptome assembly of RNA-seq data in a sheep model for delayed bone healing. BMC Genomics 12, 158
Composite transcriptome assembly of RNA-seq data in a sheep model for delayed bone healing.Crossref | GoogleScholarGoogle Scholar | 21435219PubMed |

Jun H, Daiwen C, Bing Y (2010) Metabolic and transcriptomic responses of weaned pigs induced by different dietary amylose and amylopectin ratio. PLoS ONE 5, e15110
Metabolic and transcriptomic responses of weaned pigs induced by different dietary amylose and amylopectin ratio.Crossref | GoogleScholarGoogle Scholar | 21152049PubMed |

Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Research 36, D480–D484.
KEGG for linking genomes to life and the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSku7k%3D&md5=8dae7c734a2622d15e97fdbc8e100cefCAS | 18077471PubMed |

Li R, Yu C, Li YR, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: An improved ultrafast tool for short read alignment. Bioinformatics 25, 1966–1967.
SOAP2: An improved ultrafast tool for short read alignment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovVeku7w%3D&md5=dfd19d2afe5696cd360fb0e865d40cd1CAS | 19497933PubMed |

Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN (2010) RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics 26, 493–500.
RNA-Seq gene expression estimation with read mapping uncertainty.Crossref | GoogleScholarGoogle Scholar | 20022975PubMed |

Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-Seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Research 18, 1509–1517.
RNA-Seq: an assessment of technical reproducibility and comparison with gene expression arrays.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtV2qsr3E&md5=420109118c6dde910876ebeb5d904272CAS | 18550803PubMed |

Medrano J, Rincon G, Islas-Trejo A (2010) Comparative analysis of bovine milk and mammary gland transcriptome using RNA-Seq. In ‘9th World Congress on Genetics Applied to Livestock Production’. Leipzig, Germany. Paper 852. (German Society for Animal Science) Available at http://www.kongressband.de/wcgalp2010/assets/pdf/0852.pdf [Verified 13 February 2015]

Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes byRNA-Seq. Nature Methods 5, 621–628.
Mapping and quantifying mammalian transcriptomes byRNA-Seq.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnslyqs7k%3D&md5=f9424d9be390c6e37de19d8e9523e631CAS | 18516045PubMed |

NHGRI (2011) DNA sequencing costs. National Human Genome Research Institute. Available at http://www.genome.gov/sequencingcosts/ [Verified 18 July 2014]

Okumura T, Saito K, Sakuma H, Nade T, Nakayama S, Fujita K, Kawamura T (2007) Intramuscular fat deposition in principal muscles from twenty-four to thirty months of age using identical twins of Japanese Black steers. Journal of Animal Science 85, 1902–1907.
Intramuscular fat deposition in principal muscles from twenty-four to thirty months of age using identical twins of Japanese Black steers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1OhtL0%3D&md5=f24272708f1b9597a848f03fb09671f1CAS | 17431045PubMed |

Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nature Reviews. Genetics 12, 87–98.
RNA sequencing: advances, challenges and opportunities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVelsg%3D%3D&md5=9ccf0bc68fef315845ae3d6dd1d851fdCAS | 21191423PubMed |

Pareek CS, Smoczynski R, Tretyn A (2011) Sequencing technologies and genome sequencing. Journal of Applied Genetics 52, 413–435.
Sequencing technologies and genome sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlSqsbfE&md5=8ea95f6a7dbc464ac58ef15460bfbd86CAS | 21698376PubMed |

Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, Seifert M, Borodina T, Soldatov A, Parkhomchuk D (2008) A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321, 956–960.
A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpslWrur4%3D&md5=1303c523fd6c629c728effe14ddace21CAS | 18599741PubMed |

Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nature Methods 6, 377–382.
mRNA-Seq whole-transcriptome analysis of a single cell.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVKgu78%3D&md5=788df798967f0376a15ed4b46891e1dfCAS | 19349980PubMed |

Tang Q, Ma XJ, Mo CM, Wilson IW, Song C, Zhao H, Yang YF, Fu W, Qiu DY (2011) An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis. BMC Genomics 12, 343
An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFChtr8%3D&md5=eba5a54e9eb6054875811fdf36a527bdCAS | 21729270PubMed |

Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews. Genetics 10, 57–63.
RNA-Seq: a revolutionary tool for transcriptomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWis7bL&md5=cb9446235d1d12dbe07bcf84ea0c866bCAS | 19015660PubMed |

Wang ZY, Fang BP, Chen JY, Zhang X, Luo ZX, Huang LF, Chen XL, Li YJ (2010) De novo assembly and characterization of root transcriptome using lllumina paired-end sequencing and development of cSSR markers in sweet potato (Ipomoea batatas). BMC Genomics 11, 726
De novo assembly and characterization of root transcriptome using lllumina paired-end sequencing and development of cSSR markers in sweet potato (Ipomoea batatas).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtlWlsQ%3D%3D&md5=cfc95c84ee404b4e0f747e8792ca9b0bCAS |

Yang SS, Tu ZJ, Cheung F, Xu WW, Lamb JF, Jung HJG, Vance CP, Gronwald JW (2011) Using RNA-Seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergent cell wall composition in stems. BMC Genomics 12, 199
Using RNA-Seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergent cell wall composition in stems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltlGrsr8%3D&md5=cd9e69c9d24f9fc7d52dd9a901a91813CAS | 21504589PubMed |

Zenoni S, Ferrarini A, Giacomelli E, Xumerle L, Fasoli M, Malerba G, Bellin D, Pezzotti M, Delledonne M (2010) Characterization of transcriptional complexity during berry development in vitis vinifera using RNA-Seq. Journal of Plant Physiology 152, 1787–1795.
Characterization of transcriptional complexity during berry development in vitis vinifera using RNA-Seq.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVans7w%3D&md5=498342975ab35c5c99584bf02afcfffbCAS |