Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
REVIEW (Open Access)

Regulation of post-mortem glycolysis in ruminant muscle

D. M. Ferguson A C and D. E. Gerrard B
+ Author Affiliations
- Author Affiliations

A CSIRO Division of Animal, Food and Health Sciences, Locked Bag 1, Armidale, NSW 2350, Australia.

B Department of Animal and Poultry Sciences, Virginia University, Blacksburg, VA 24061, USA.

C Corresponding author. Email: Drewe.Ferguson@csiro.au

Animal Production Science 54(4) 464-481 https://doi.org/10.1071/AN13088
Submitted: 8 March 2013  Accepted: 6 January 2014   Published: 11 March 2014

Journal Compilation © CSIRO Publishing 2014 Open Access CC BY-NC-ND

Abstract

As a tissue, muscle has the unique ability to switch its metabolic source of ATP, the energy currency underpinning muscle function. During oxygen debt, such as that occurring immediately following the death of animals, anaerobic metabolism is initiated in an attempt to restore homeostasis within the muscle. The cascade of biochemical events that are initiated is paramount in the context of meat quality. This review revisits this reasonably well-known subject but takes a new perspective by drawing on the understanding outside the traditional discipline of meat science. Our understanding of the intrinsic regulators of glycolytic flux has improved but knowledge gaps remain. Further efforts to understand how the glycolytic enzyme kinetics are influenced by both pre- and post-slaughter factors will be beneficial in the ongoing quest to maximise fresh meat quality.

Additional keywords: muscle, post-mortem glycolysis, ruminant.


References

Aalhus JL, Price MA (1991) Endurance-exercised growing sheep: I. Postmortem and histological changes in skeletal muscles. Meat Science 29, 43–56.
Endurance-exercised growing sheep: I. Postmortem and histological changes in skeletal muscles.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MbntlOitw%3D%3D&md5=a148ee91ecf95c55e66102412ae00e61CAS | 22060971PubMed |

Aalhus JL, Jones SDM, Lutz S, Best DR, Robertson WM (1994) The efficacy of high and low-voltage electrical-stimulation under different chilling regimes. Canadian Journal of Animal Science 74, 433–442.
The efficacy of high and low-voltage electrical-stimulation under different chilling regimes.Crossref | GoogleScholarGoogle Scholar |

Adamo KB, Graham TE (1998) Comparison of traditional measurements with macroglycogen and proglycogen analysis of muscle glycogen. Journal of Applied Physiology (Bethesda, Md.) 84, 908–913.

Allison CP, Bates RO, Booren AM, Johnson RC, Doumit ME (2003) Pork quality variation is not explained by glycolytic enzyme capacity. Meat Science 63, 17–22.
Pork quality variation is not explained by glycolytic enzyme capacity.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MbnsVGlsg%3D%3D&md5=789e80ed204720ed43f9ccf280b01df0CAS | 22061979PubMed |

Alonso MD, Lomako J, Lomako WM, Whelan WJ (1995) A new look at the biogenesis of glycogen. The FASEB Journal 9, 1126–1137.

Asp S, Daugaard JR, Rohde T, Adamo K, Graham T (1999) Muscle glycogen accumulation after a marathon: roles of fiber type and pro- and macroglycogen. Journal of Applied Physiology (Bethesda, Md.) 86, 474–478.

Bangsbo J, Graham TE, Kiens B, Saltin B (1992) Elevated muscle glycogen and anaerobic energy production during exhaustive exercise in man. The Journal of Physiology 451, 205–227.

Bate-Smith EC, Bendall JR (1947) Rigor mortis and adenotriphosphate. The Journal of Physiology 106, 107–112.

Bendall JR (1951) The shortening of rabbit muscle during rigor mortis: Relation to the breakdown of adenosine triphosphate and creatine phosphate and to muscular contraction. The Journal of Physiology 114, 71–88.

Bendall JR (1973) Postmortem changes in muscle. In ‘The Structure and Function of Muscle, Vol. 2’. (Ed. GH Bourne) pp. 244–309. (Academic Press: New York)

Bendall JR (1978) Variability in rates of pH fall and of lactate production in the muscles of cooling beef carcasses. Meat Science 2, 91–104.
Variability in rates of pH fall and of lactate production in the muscles of cooling beef carcasses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXkslCgsLc%3D&md5=d4cf116e660d05f3653456c6715ab115CAS | 22054970PubMed |

Bendall JR (1980) The electrical stimulation of carcasses of meat animals. In ‘Developments in meat science’. Vol. 1, pp. 37–59. (Applied Science Publishers: London)

Bertram HC, Stodkilde-Jorgensen H, Karlsson AH, Andersen HJ (2002) Post mortem energy metabolism and meat quality of porcine M. longissimus dorsi as influenced by stunning method—a P-31 NMR spectroscopic study. Meat Science 62, 113–119.
Post mortem energy metabolism and meat quality of porcine M. longissimus dorsi as influenced by stunning method—a P-31 NMR spectroscopic study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksValt7o%3D&md5=525a840a1b1b78f774c2f283e8196f5eCAS | 22061199PubMed |

Bond JJ, Warner RD (2007) Ion distribution and protein proteolysis affect water holding capacity of Longissimus thoracis et lumborum in meat of lamb subjected to antemortem exercise. Meat Science 75, 406–414.
Ion distribution and protein proteolysis affect water holding capacity of Longissimus thoracis et lumborum in meat of lamb subjected to antemortem exercise.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVSrsA%3D%3D&md5=b774394570801f7c29247962edbbe07cCAS | 22063796PubMed |

Booth J, McKenna MJ, Ruell PA, Gwinn TH, Davis GM, Thompson MW, Harmer AR, Hunter SK, Sutton JR (1997) Impaired calcium pump function does not slow relaxation in human skeletal muscle after prolonged exercise. Journal of Applied Physiology (Bethesda, Md.) 83, 511–521.

Bouton PE, Weste RR, Shaw FD (1980) Electrical stimulation of calf carcasses: response of various muscles to different waveforms. Journal of Food Science 45, 148–149.
Electrical stimulation of calf carcasses: response of various muscles to different waveforms.Crossref | GoogleScholarGoogle Scholar |

Briskey EJ, Kastenschmidt LL, Forrest JC, Beecher GR, Judge MD, Cassens RG, Hoekstra WG (1966) Biochemical aspects of post mortem changes in porcine muscle. Journal of Agricultural and Food Chemistry 14, 201–207.
Biochemical aspects of post mortem changes in porcine muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XktFGntb8%3D&md5=a54df2846d702340c5095f78cb1bb2c2CAS |

Bröjer JT, Stampfli HR, Graham TE (2002) Analysis of proglycogen and macroglycogen content in muscle biopsy specimens obtained from horses. American Journal of Veterinary Research 63, 570–575.
Analysis of proglycogen and macroglycogen content in muscle biopsy specimens obtained from horses.Crossref | GoogleScholarGoogle Scholar | 11939321PubMed |

Brooks SP, Storey KB (1991) The effect of enzyme-enzyme complexes on the overall glycolytic rate in vivo. Biochemistry International 25, 477–489.

Burrow HM, Moore SS, Johnston DJ, Barendse W, Bindon BM (2001) Quantitative and molecular genetic influences on properties of beef: a review. Australian Journal of Experimental Agriculture 41, 893–919.
Quantitative and molecular genetic influences on properties of beef: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotlGhtbY%3D&md5=2e84e6b2dc13af00092a1a1c94262ebaCAS |

Butchers ADM, Ferguson DM, Devine CE, Thompson JM (1998) Interaction between pre-slaughter handling and low voltage electrical simulation and effect on beef quality. In ‘Proceedings 44th International Congress of Meat Science and Technology’. pp. 1050–1051. Barcelona, Spain. (ICoMST)

Byrd SK, Bode AK, Klug GA (1989a) Effects of exercise of varying duration on sarcoplasmic reticulum function. Journal of Applied Physiology (Bethesda, Md.) 66, 1383–1389.

Byrd SK, McCutcheon LJ, Hodgson DR, Gollnick PD (1989b) Altered sarcoplasmic reticulum function after high-intensity exercise. Journal of Applied Physiology (Bethesda, Md.) 67, 2072–2077.

Carpenter E, Rice OD, Cockett NE, Snowder GD (1996) Histology and composition of muscles from normal and callipyge lambs. Journal of Animal Science 74, 388–393.

Cassens RG, Newbold RP (1967a) Effect of temperature on the time course of rigor mortis in ox muscle. Journal of Food Science 32, 269–272.
Effect of temperature on the time course of rigor mortis in ox muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXkslWks7s%3D&md5=e1ae480f1ee58d7b4ef22db77db74838CAS |

Cassens RG, Newbold RP (1967b) Temperature dependence of pH changes in ox muscle post-mortem. Journal of Food Science 32, 13–14.
Temperature dependence of pH changes in ox muscle post-mortem.Crossref | GoogleScholarGoogle Scholar |

Channon HA, Payne AM, Warner RD (2000) Halothane genotype, pre-slaughter handling and stunning method all influence pork quality. Meat Science 56, 291–299.
Halothane genotype, pre-slaughter handling and stunning method all influence pork quality.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MbnsVKntg%3D%3D&md5=f211ced8ded52220201560dad79cb056CAS | 22062081PubMed |

Channon HA, Payne AM, Warner RD (2002) Comparison of CO2 stunning with manual electrical stunning (50 Hz) of pigs on carcass and meat quality. Meat Science 60, 63–68.
Comparison of CO2 stunning with manual electrical stunning (50 Hz) of pigs on carcass and meat quality.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MbnsFCksQ%3D%3D&md5=e2795a825891ac855b7c806f56d4d993CAS | 22063106PubMed |

Chasiotis D (1988) Role of cyclic AMP and inorganic phosphate in the regulation of muscle glycogenolysis during exercise. Medicine and Science in Sports and Exercise 20, 545–550.
Role of cyclic AMP and inorganic phosphate in the regulation of muscle glycogenolysis during exercise.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtFait7s%3D&md5=883441973915cdf3ab70ac7aca731480CAS | 2853269PubMed |

Cheetham ME, Boobis LH, Brooks S, Williams C (1986) Human muscle metabolism during sprint running. Journal of Applied Physiology 61, 54–60.

Chrystall BB, Devine CE (1978) Electrical stimulation, muscle tension and glycolysis in bovine sternomandibularis. Meat Science 2, 49–58.
Electrical stimulation, muscle tension and glycolysis in bovine sternomandibularis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhsFSrsLY%3D&md5=3b9a1a98946e849275c97253765c31caCAS | 22054838PubMed |

Chrystall BB, Devine CE (1983) Electrical stimulation: its early development in New Zealand. In ‘Advances in meat science’. Vol. 1, 73–119. (Eds A. M. Pearson and T. R. Dutson): (AVI Publishers: NewYork)

Chrystall BB, Devine CE, Snodgrass M, Ellery S (1982) Tenderness in exercise stressed lambs. New Zealand Journal of Agricultural Research 25, 331–336.
Tenderness in exercise stressed lambs.Crossref | GoogleScholarGoogle Scholar |

Conley KE, Kemper WF, Crowther GJ (2001) Limits to sustainable muscle performance: interaction between glycolysis and oxidative phosphorylation. The Journal of Experimental Biology 204, 3189–3194.

Connett RJ, Sahlin K (1996) Control of glycolysis and glycogen metabolism. In ‘Handbook of physiology. 12. Exercise: Regulation and integration of multiple systems’. pp. 870–911 (Eds LB Rowell, JT Shepherd) (Oxford University Press: New York)

Copenhafer TL, Richert BT, Schinckel AP, Grant AL, Gerrard DE (2006) Augmented postmortem glycolysis does not occur early postmortem in AMPK73-mutated porcine muscle of halothane positive pigs. Meat Science 73, 590–599.
Augmented postmortem glycolysis does not occur early postmortem in AMPK73-mutated porcine muscle of halothane positive pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVCqt78%3D&md5=0997430c4862290eea75bd17fbe2bf43CAS | 22062557PubMed |

Crowther GJ, Carey MF, Kemper WF, Conley KE (2002) Control of glycolysis in contracting skeletal muscle. I. Turning it on. American Journal of Physiology. Endocrinology and Metabolism 282, E67–E73.

Daly CC (1997) Energy metabolism in post mortem muscle. In ‘Proceedings of 43rd International Congress of Meat Science and Technology’. Auckland, New Zealand (ICoMST)

Daly BL, Gardner GE, Ferguson DM, Thompson JM (2006) The effect of time off feed prior to slaughter on muscle glycogen metabolism and rate of pH decline in three different muscles of stimulated and non-stimulated sheep carcasses. Australian Journal of Agricultural Research 57, 1229–1235.
The effect of time off feed prior to slaughter on muscle glycogen metabolism and rate of pH decline in three different muscles of stimulated and non-stimulated sheep carcasses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFeqsr7M&md5=78d7e290ba25ed0f23be96aea41ed49bCAS |

Derave W, Gao S, Richter EA (2000) Pro- and macroglycogenolysis in contracting rat skeletal muscle. Acta Physiologica Scandinavica 169, 291–296.
Pro- and macroglycogenolysis in contracting rat skeletal muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1yntLc%3D&md5=5ed126f5e286f20a294cd905c08e7691CAS | 10951120PubMed |

Devine CE, Ellery S, Averill S (1984) Response of different types of ox muscle to electrical stimulation. Meat Science 10, 35–51.
Response of different types of ox muscle to electrical stimulation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MbmvFChsA%3D%3D&md5=e1ebe971581f7c985db0b3ac8c7b9dbfCAS | 22055994PubMed |

Devine CE, Wahlgren NM, Tornberg E (1999) Effect of rigor temperature on muscle shortening and tenderisation of restrained and unrestrained beef M. longissimus thoracicus et lumborum. Meat Science 51, 61–72.
Effect of rigor temperature on muscle shortening and tenderisation of restrained and unrestrained beef M. longissimus thoracicus et lumborum.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MbnsVWqtA%3D%3D&md5=0fa670a2c0be3f3e48dbef00926751beCAS | 22061537PubMed |

Devine CE, Payne SR, Peachey BM, Lowe TE, Ingram JR, Cook CJ (2002) High and low rigor temperature effects on sheep meat tenderness and ageing. Meat Science 60, 141–146.
High and low rigor temperature effects on sheep meat tenderness and ageing.Crossref | GoogleScholarGoogle Scholar | 22063237PubMed |

Dransfield E (1994) Modeling postmortem tenderization. 5. Inactivation of calpains. Meat Science 37, 391–409.
Modeling postmortem tenderization. 5. Inactivation of calpains.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmt12htrg%3D&md5=0f7a088f9aab1db34f9490fe94eb77d9CAS |

Dransfield E (1995) Control of meat texture at an industrial scale. In ‘Expression of tissue proteinases and regulation of protein degradation as related to meat quality’. pp. 463–484 (Eds A Ouali, DI Demeyer, FJM Smulders) (ECCEAMST: Utrecht, the Netherlands)

Dransfield E (1999) Meat tenderness - the μ-calpain hypothesis. In ‘45th International Congress of Meat Science and Technology’. (Yokohama, Japan) (ICoMST)

Dransfield E, Wakefield DK, Parkman ID (1992) Modeling postmortem tenderization. 1. Texture of electrically stimulated and non-stimulated beef. Meat Science 31, 57–73.
Modeling postmortem tenderization. 1. Texture of electrically stimulated and non-stimulated beef.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3Mbnt1yrsg%3D%3D&md5=6d1d9bd0fd3f53e70431a97f96c8e6bfCAS | 22059510PubMed |

England EM, Scheffler TL, Kasten SC, Matarneh SK, Gerrad DE (2013) Exploring the unknowns involved in the transformation of muscle to meat. Meat Science 95, 837–843.
Exploring the unknowns involved in the transformation of muscle to meat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnslCisLw%3D&md5=6df79d4dae2fa2e63be356049ee6edd6CAS | 23673227PubMed |

Essen-Gustavsson B (1996) Skeletal muscle adaptation with use and disuse. Comparative aspects between species. In ‘42nd International Congress of Meat Science and Technology’. Lillehammer, Norway. (ICoMST)

Favero TG, Pessah IN, Klug GA (1993) Prolonged exercise reduces Ca2+ release in rat skeletal muscle sarcoplasmic reticulum. Pflugers Archiv 422, 472–475.
Prolonged exercise reduces Ca2+ release in rat skeletal muscle sarcoplasmic reticulum.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s3jsVaitg%3D%3D&md5=f991594b5ee751db275745e748200859CAS | 7682687PubMed |

Ferguson DM (2003) Regulation of post-mortem glycolysis in ruminant muscle. PhD thesis. University of New England, Armidale, NSW.

Ferguson DM, Warner RD (2008) Have we underestimated the impact of pre-slaughter stress on meat quality in ruminants? Meat Science 80, 12–19.
Have we underestimated the impact of pre-slaughter stress on meat quality in ruminants?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MbnsFGhtw%3D%3D&md5=323d757bd1f8b7d692a3836e56312925CAS | 22063165PubMed |

Ferguson DM, Bruce HL, Thompson JM, Egan AF, Perry D, Shorthose WR (2001) Factors affecting beef palatability—farmgate to chilled carcass. Australian Journal of Experimental Agriculture 41, 879–891.
Factors affecting beef palatability—farmgate to chilled carcass.Crossref | GoogleScholarGoogle Scholar |

Ferguson DM, Shaw FD, Stark JL (2007) Effect of reduced lairage duration on beef quality. Australian Journal of Experimental Agriculture 47, 770–773.
Effect of reduced lairage duration on beef quality.Crossref | GoogleScholarGoogle Scholar |

Ferguson DM, Daly BL, Gardner GE, Tume RK (2008) Effect of glycogen concentration and form on the response to electrical stimulation and rate of post-mortem glycolysis in ovine muscle. Meat Science 78, 202–210.
Effect of glycogen concentration and form on the response to electrical stimulation and rate of post-mortem glycolysis in ovine muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlCrsbbL&md5=929e5a4f31918aee42feee85823c3b45CAS | 22062271PubMed |

Fernandez X, Tornberg E, Naveau J, Talmant A, Monin G (1992) Bimodal distribution of the muscle glycolytic potential in French and Swedish populations of Hampshire crossbred pigs. Journal of the Science of Food and Agriculture 59, 307–311.
Bimodal distribution of the muscle glycolytic potential in French and Swedish populations of Hampshire crossbred pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xmtlamtr4%3D&md5=9d4c004480f790242eb80d905e002127CAS |

Fitts RH (1994) Cellular mechanisms of muscle fatigue. Physiological Reviews 74, 49–94.

Fridén J, Seger J, Ekblom B (1989) Topographical localization of muscle glycogen: an ultrahistochemical study in the human vastus lateralis. Acta Physiologica Scandinavica 135, 381–391.
Topographical localization of muscle glycogen: an ultrahistochemical study in the human vastus lateralis.Crossref | GoogleScholarGoogle Scholar | 2467521PubMed |

Gardner GE (2001) Nutritional regulation of glycogen metabolism in cattle and sheep. PhD thesis. Murdoch University, Perth, W. Aust.

Goldsmith E, Sprang S, Fletterick R (1982) Structure of maltoheptaose by difference Fourier methods and a model for glycogen. Journal of Molecular Biology 156, 411–427.
Structure of maltoheptaose by difference Fourier methods and a model for glycogen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XktlGjsrw%3D&md5=2cfa3671648d4d7f98cc3f083e05280fCAS | 7086906PubMed |

Gollnick PD, Korge P, Karpakka J, Saltin B (1991) Elongation of skeletal muscle relaxation during exercise is linked to reduced calcium uptake by the sarcoplasmic reticulum in man. Acta Physiologica Scandinavica 142, 135–136.
Elongation of skeletal muscle relaxation during exercise is linked to reduced calcium uptake by the sarcoplasmic reticulum in man.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXksVKksb0%3D&md5=68a69250623eebf722bc04ee8dc9516cCAS | 1831584PubMed |

Graham TE, Adamo KB, Shearer J, Marchand I, Saltin B (2001) Pro- and macroglycogenolysis: relationship with exercise intensity and duration. Journal of Applied Physiology (Bethesda, Md.) 90, 873–879.

Greaser ML, Cassens RG, Briskey EJ, Hoekstra WG (1969) Post-mortem changes in subcellular fractions from normal and pale soft exudative porcine muscle. 1. Calcium accumulation and adenosine triphosphatase activities. Journal of Food Science 34, 120–124.
Post-mortem changes in subcellular fractions from normal and pale soft exudative porcine muscle. 1. Calcium accumulation and adenosine triphosphatase activities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXkt1SjtLg%3D&md5=ffed94024c9fd905eb08985c32da8a73CAS |

Greenwood PL, Dunshea FR (2009) ‘Biology and regulation of carcass composition .’ (Woodhead Publishing Ltd: Cambridge, UK)

Gregory NG (1995) Recent developments in the gas stunning of pigs. In ‘Meat 95. Australian Meat Industry Research Conference’. 9B1–9B4. Gold Coast. (CSIRO Division of Food Science and Technology: Brisbane)

Gunja-Smith Z, Marshall JJ, Mercier C, Smith EE, Whelan WJ (1970) A revision of the Meyer-Bernfeld model of glycogen and amylopectin. FEBS Letters 12, 101–104.
A revision of the Meyer-Bernfeld model of glycogen and amylopectin.Crossref | GoogleScholarGoogle Scholar | 11945551PubMed |

Hamm R (1977) Postmortem breakdown of ATP and glycogen in ground muscle: A review. Meat Science 1, 15–39.
Postmortem breakdown of ATP and glycogen in ground muscle: A review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXks1Klsb4%3D&md5=5ee66213826428291297a9ad0579a29dCAS | 22054426PubMed |

Hargreaves M, Richter EA (1988) Regulation of skeletal muscle glycogenolysis during exercise. Canadian Journal of Sport Sciences 13, 197–203.

Hargreaves M, McConell G, Proietto J (1995) Influence of muscle glycogen on glycogenolysis and glucose uptake during exercise in humans. Journal of Applied Physiology (Bethesda, Md.) 78, 288–292.

Hargreaves M, Finn JP, Withers RT, Halbert JA, Scroop GC, Mackay M, Snow RJ, Carey MF (1997) Effect of muscle glycogen availability on maximal exercise performance. European Journal of Applied Physiology and Occupational Physiology 75, 188–192.
Effect of muscle glycogen availability on maximal exercise performance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXislyntLw%3D&md5=223da869ab7bc1893abdec3edc37fb9cCAS | 9118987PubMed |

Harris PV, Shorthose WR (1988) Meat texture. In ‘Development in meat science—4’. (Ed. RA Lawrie). (Elsevier Science Publications Ltd: London)

Hellsten Y, Richter EA, Kiens B, Bangsbo J (1999) AMP deamination and purine exchange in human skeletal muscle during and after intense exercise. Journal of Physiology 520, 909–920.
AMP deamination and purine exchange in human skeletal muscle during and after intense exercise.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns1elsrg%3D&md5=7a6f3e021c8951dd69df6a7bd83fd4e6CAS | 10545153PubMed |

Henriksson J (1992) Effects of physical training on the metabolism of skeletal muscle. Diabetes Care 15, 1701–1711.
Effects of physical training on the metabolism of skeletal muscle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s7gsFOqsg%3D%3D&md5=1196eb36e2d71f825b8df702eb712409CAS | 1468304PubMed |

Hertzman C, Olsson U, Tornberg E (1993) The influence of high-temperature, type of muscle and electrical-stimulation on the course of rigor, aging and tenderness of beef muscles. Meat Science 35, 119–141.
The influence of high-temperature, type of muscle and electrical-stimulation on the course of rigor, aging and tenderness of beef muscles.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MbntlKjsQ%3D%3D&md5=6f3ca62e08b17e48f991ff29bf19a844CAS | 22060841PubMed |

Hespel P, Richter EA (1990) Glucose uptake and transport in contracting, perfused rat muscle with different pre-contraction glycogen concentrations. The Journal of Physiology 427, 347–359.

Hespel P, Richter EA (1992) Mechanism linking glycogen concentration and glycogenolytic rate in perfused contracting rat skeletal muscle. Biochemical Journal 284, 777–780.

Hochachka PW (2003) Intracellular convection, homeostasis and metabolic regulation. The Journal of Experimental Biology 206, 2001–2009.
Intracellular convection, homeostasis and metabolic regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslaltLk%3D&md5=133233f23bad5ba127009359a9cdf3dcCAS | 12756282PubMed |

Hochachka PW, McClelland GB (1997) Cellular metabolic homeostasis during large-scale change in ATP turnover rates in muscles. The Journal of Experimental Biology 200, 381–386.

Holmes JHG, Ashmore CP (1972) A histochemical study of development of muscle fibre type and size in normal and double muscled cattle. Growth 36, 351–372.

Honikel KO, Kim CJ (1986) Causes of the development of PSE pork. Fleischwirtschaft 66, 349–353.

Hopkins DL, Thompson JM (2001) Inhibition of protease activity 2. Degradation of myofibrillar proteins, myofibril examination and determination of free calcium levels. Meat Science 59, 199–209.
Inhibition of protease activity 2. Degradation of myofibrillar proteins, myofibril examination and determination of free calcium levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlt1Sht78%3D&md5=5e4179107a02bc800d0ca10ce94c5bddCAS | 22062679PubMed |

Hopkins DL, Stanley DF, Martin LC, Toohey ES, Gilmour AR (2007) Genotype and age effects on sheep meat production 3. Meat quality. Australian Journal of Experimental Agriculture 47, 1155–1164.
Genotype and age effects on sheep meat production 3. Meat quality.Crossref | GoogleScholarGoogle Scholar |

Horgan DJ, Kuypers R (1985) Post-mortem glycolysis in rabbit longissimus dorsi muscles following electrical stimulation. Meat Science 12, 225–241.
Post-mortem glycolysis in rabbit longissimus dorsi muscles following electrical stimulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhvVeqs7w%3D&md5=93aadd82b55774e62ef98394be58d26eCAS |

Howard A (1963) The relation between physiological stress and meat quality. In ‘Carcass composition and appraisal of meat animals’. pp. 11–21 (Ed. DE Tribe) (CSIRO: Melbourne)

Huang M, Lee C, Lin R, Chen R (1997) The exchange between proglycogen and macroglycogen and the metabolic role of the protein-rich glycogen in rat skeletal muscle. The Journal of Clinical Investigation 99, 501–505.
The exchange between proglycogen and macroglycogen and the metabolic role of the protein-rich glycogen in rat skeletal muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtVKktrs%3D&md5=ed68d94f97f0b4ece084cce7791d6749CAS | 9022084PubMed |

Huang HG, Larsen MR, Karlsson AH, Pomponio L, Costa LN, Lametsch R (2011) Gel-based phosphoproteomics analysis of sarcoplasmic proteins in postmortem porcine muscle with pH decline rate and time differences. Proteomics 11, 4063–4076.
Gel-based phosphoproteomics analysis of sarcoplasmic proteins in postmortem porcine muscle with pH decline rate and time differences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12rtrzE&md5=1eb51addd6b133e3cb9bc2d37a9dd0d9CAS |

Hudson NJ (2012) Mitochondrial treason: a driver of pH decline rate in post-mortem muscle? Animal Production Science 52, 1107–1110.
Mitochondrial treason: a driver of pH decline rate in post-mortem muscle?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Wju7zK&md5=f687e4da05352dc41a264a4e411a9e9aCAS |

Huffman KL, Miller MF, Hoover LC, Wu CK, Brittin HC, Ramsey CB (1996) Effect of beef tenderness on consumer satisfaction with steaks consumed in the home and restaurant. Journal of Animal Science 74, 91–97.

Hwang IH, Thompson JM (2001) The effect of time and type of electrical stimulation on the calpain system and meat tenderness in beef longissimus dorsi muscle. Meat Science 58, 135–144.
The effect of time and type of electrical stimulation on the calpain system and meat tenderness in beef longissimus dorsi muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit1Wgurg%3D&md5=270f7e9f2075e49cd0428af203c46a10CAS | 22062108PubMed |

Iaizzo PA, Klein W, Lehmannhorn F (1988) Fura-2 detected myoplasmic calcium and its correlation with contracture force in skeletal muscle from normal and malignant hyperthermia susceptible pigs. European Journal of Physiology 411, 648–653.
Fura-2 detected myoplasmic calcium and its correlation with contracture force in skeletal muscle from normal and malignant hyperthermia susceptible pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktlKisL4%3D&md5=098dbc5a15840ebe453f6fca6057d155CAS | 3412868PubMed |

Immonen K, Kauffman RG, Schaefer DM, Puolanne E (2000) Glycogen concentrations in bovine longissimus dorsi muscle. Meat Science 54, 163–167.
Glycogen concentrations in bovine longissimus dorsi muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvFCqsQ%3D%3D&md5=c3b3fb5b04106e0d94bb699c860d7a17CAS | 22060612PubMed |

Jacob RH, Hopkins DL (2014) Techniques to reduce the temperature of beef muscle early in the post-mortem period – a review. Animal Production Science 54, 482–493.
Techniques to reduce the temperature of beef muscle early in the post-mortem period – a review.Crossref | GoogleScholarGoogle Scholar |

Jacob RH, Surridge VSM, Beatty DT, Gardner GE, Warner RD (2014) Grain feeding increases core body temperature of beef cattle. Animal Production Science 54, 444–449.
Grain feeding increases core body temperature of beef cattle.Crossref | GoogleScholarGoogle Scholar |

James AP, Bames PD, Palmer TN, Fournier PA (2008) Proglycogen and macroglycogen: artifacts of glycogen extraction? Metabolism: Clinical and Experimental 57, 535–543.
Proglycogen and macroglycogen: artifacts of glycogen extraction?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVens7Y%3D&md5=1326d0f4f981c7dba6667a179277efd1CAS |

Jansson E (1981) Acid soluble and insoluble glycogen in human skeletal muscle. Acta Physiologica Scandinavica 113, 337–340.
Acid soluble and insoluble glycogen in human skeletal muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xjt1Kg&md5=f2d5aec3d8b11a772852ca811e8a4ec3CAS | 6285675PubMed |

Jeacocke RE (1977) The temperature dependence of anaerobic glycolysis in beef muscle held in a linear temperature gradient. Journal of the Science of Food and Agriculture 28, 551–556.
The temperature dependence of anaerobic glycolysis in beef muscle held in a linear temperature gradient.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXltlantrw%3D&md5=bd54f2cc1ff1f34d767d55e1f8e4b430CAS |

Jeacocke RE (1993) The concentrations of free magnesium and free calcium-ions both increase in skeletal-muscle fibers entering rigor-mortis. Meat Science 35, 27–45.
The concentrations of free magnesium and free calcium-ions both increase in skeletal-muscle fibers entering rigor-mortis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmtVajur8%3D&md5=4d432b44fdbb0b6d206a47032721fa64CAS | 22060835PubMed |

Johnston DJ, Reverter A, Ferguson DM, Thompson JM, Burrow HM (2003) Genetic and phenotypic characterisation of animal, carcass, and meat quality traits from temperate and tropically adapted beef breeds. 3. Meat quality traits. Australian Journal of Agricultural Research 54, 135–147.
Genetic and phenotypic characterisation of animal, carcass, and meat quality traits from temperate and tropically adapted beef breeds. 3. Meat quality traits.Crossref | GoogleScholarGoogle Scholar |

Juel C, Klarskov C, Nielsen JJ, Krustrup P, Mohr M, Bangsbo J (2004) Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle. American Journal of Physiology. Endocrinology and Metabolism 286, E245–E251.
Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFarsbY%3D&md5=cd2c292f88e2ea966957362b043a72ebCAS | 14559724PubMed |

Kastenschmidt L, Hoekstra WG, Briskey EJ (1968) Glycolytic intermediates and co-factors in fast- and slow-glycolyzing muscle of pig. Journal of Food Science 33, 151–158.
Glycolytic intermediates and co-factors in fast- and slow-glycolyzing muscle of pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXktFOgt70%3D&md5=61e21b669585fcaa17f2ca4be0405d38CAS |

Kentbraun JA, Miller RG, Weiner MW (1993) Phases of metabolism during progressive exercise to fatigue in human skeletal muscle. Journal of Applied Physiology 75, 573–580.

Klont RE, Lambooy E (1995) Effects of preslaughter muscle exercise on muscle metabolism and meat quality studied in anesthetized pigs of different halothane genotypes. Journal of Animal Science 73, 108–117.

Koohmaraie M (1992) The role of Ca(2+)-dependent proteases (calpains) in post mortem proteolysis and meat tenderness. Biochimie 74, 239–245.
The role of Ca(2+)-dependent proteases (calpains) in post mortem proteolysis and meat tenderness.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XksVKrsrc%3D&md5=3b9de3cf6df683d04b5b2df9c8022bdeCAS | 1610937PubMed |

Koohmaraie M (1996) Biochemical factors regulating the toughening and tenderization processes of Meat. Meat Science 43, 193–201.
Biochemical factors regulating the toughening and tenderization processes of Meat.Crossref | GoogleScholarGoogle Scholar |

Koohmaraie M, Geesink GH (2006) Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Science 74, 34–43.
Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xms1Grsbk%3D&md5=1e6bab8be15345f5680d47f98eb09e37CAS | 22062714PubMed |

Koohmaraie M, Seideman SC, Schollmeyer JE, Dutson TR, Crouse JD (1987) Effect of postmortem storage on Ca++-dependent proteases, their inhibitor and myofibril fragmentation. Meat Science 19, 187–196.
Effect of postmortem storage on Ca++-dependent proteases, their inhibitor and myofibril fragmentation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlsFejt7s%3D&md5=4f8736daabd1788fe2e6941affc92efcCAS | 22055942PubMed |

Korzeniewski B (2006) AMP deamination delays muscle acidification during heavy exercise and hypoxia. The Journal of Biological Chemistry 281, 3057–3066.
AMP deamination delays muscle acidification during heavy exercise and hypoxia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFSnurs%3D&md5=bcc0947002aebbbe6aa405eac7cd81b8CAS | 16314416PubMed |

Krause U, Wegener G (1996) Control of adenine nucleotide metabolism and glycolysis in vertebrate skeletal muscle during exercise. Experientia 52, 396–403.
Control of adenine nucleotide metabolism and glycolysis in vertebrate skeletal muscle during exercise.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjsVKnsb0%3D&md5=f3fb23a51451d6c0bc64d136eb861262CAS | 8641374PubMed |

Kuchenmeister U, Langhammer M, Renne U, Nurnberg G, Ender K (2001) Effect of exercise on sarcoplasmic reticulum Ca2+ transport in muscle of mouse lines long-term selected for different performance traits. Archiv Fur Tierzucht 44, 441–450.

Kushmerick MJ, Conley KE (2002) Energetics of muscle contraction: the whole is less than the sum of its parts. Biochemical Society Transactions 30, 227–231.
Energetics of muscle contraction: the whole is less than the sum of its parts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvVKgsro%3D&md5=583c1836770b51f4c58c23ad170cde22CAS | 12023856PubMed |

Lacourt A, Tarrant PV (1985) Glycogen depletion patterns in myofibres of cattle during stress. Meat Science 15, 85–100.
Glycogen depletion patterns in myofibres of cattle during stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xjt1ersw%3D%3D&md5=db6a1260234c99fc55d1ec73f5855489CAS | 22056127PubMed |

Lambert MG, Knight TW, Cosgrove GP, Anderson CB, Death AF, Fisher AD (1998) Exercise effects on muscle glycogen concentration in beef cattle. In ‘Proceedings of the New Zealand Society of Animal Production’. pp. 243–244. Hamilton, New Zealand. (New Zealand Society of Animal Production)

Lametsch R, Larsen MR, Essen-Gustavsson B, Jensen-Waern M, Lundstrom K, Lindahl G (2011) Postmortem changes in pork muscle protein phosphorylation in relation to the RN genotype. Journal of Agricultural and Food Chemistry 59, 11608–11615.
Postmortem changes in pork muscle protein phosphorylation in relation to the RN genotype.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlSqsb3N&md5=93558b5c4c9e96ef49af5e5419d722f1CAS | 21958152PubMed |

Lawrie RA (1998) ‘Meat science .’ (Woodhead Publishing Ltd: Cambridge, UK)

Lebret B, Le Roy P, Monin G, Lefaucheur L, Caritez JC, Talmant A, Elsen JM, Sellier P (1999) Influence of the three RN genotypes on chemical composition, enzyme activities, and myofiber characteristics of porcine skeletal muscle. Journal of Animal Science 77, 1482–1489.

Lehninger AL, Nelson DL, Cox MM (1993) ‘Principles of biochemistry.’ (Worth Publishers New York)

Lister D (1989) Muscle metabolism and animal physiology in the dark cutting condition. In ‘Dark-cutting in cattle and sheep. Proceedings of an Australian workshop’. (Eds SU Fabiansson, WR Shorthose, RD Warner) pp. 19–25. (Australian Meat & Live-stock Research & Development Corporation. Sydney)

Lister D, Gregory NG, Warriss PD (1981) ‘Stress in meat animals.’ (Applied Science Publishers: London)

Locker RH, Hagyard CJ (1963) A cold shortening effect in beef muscles. Journal of the Science of Food and Agriculture 14, 787–793.
A cold shortening effect in beef muscles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXlsFOiug%3D%3D&md5=ebcef65dee72d68932c06451127cd7e1CAS |

Lopez JR, Alamo LA, Allen P, Sreter F (1986) Intracellular free calcium concentration in muscle fibers of swine susceptible to malignant hyperthermia. Acta Anaesthesiologica Italica 37, 563–567.

Lowenstein JM (1990) The purine nucleotide cycle revisted. International Journal of Sports Medicine 11, S37–S46.
The purine nucleotide cycle revisted.Crossref | GoogleScholarGoogle Scholar | 2193892PubMed |

Luckin KA, Favero TG, Klug GA (1991) Prolonged exercise induces structural changes in SR Ca(2+)-ATPase of rat muscle. Biochemical Medicine and Metabolic Biology 46, 391–405.
Prolonged exercise induces structural changes in SR Ca(2+)-ATPase of rat muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xls1aksg%3D%3D&md5=1a6d3644228e647824ff2648054d7d54CAS | 1838929PubMed |

Marcinek DJ, Ciesielski WA, Conley KE, Schenkman KA (2003) Oxygen regulation and limitation to cellular respiration in mouse skeletal muscle in vivo. American Journal of Physiology. Heart and Circulatory Physiology 285, H1900–H1908.

Marsh BB (1954) Rigor mortis in beef. Journal of the Science of Food and Agriculture 5, 70–75.
Rigor mortis in beef.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2cXjtlKqsQ%3D%3D&md5=20c13aeeb6fdd9ec8cb0cb2d4e1acd6dCAS |

McGeehin B, Sheridan JJ, Butler F (2001) Factors affecting the pH decline in lamb after slaughter. Meat Science 58, 79–84.
Factors affecting the pH decline in lamb after slaughter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntlyjug%3D%3D&md5=444b44ddae57620ab17dc3504433fe49CAS | 22061923PubMed |

Meinke MH, Edstrom RD (1991) Muscle glycogenolysis. Regulation of the cyclic interconversion of phosphorylase a and phosphorylase b. The Journal of Biological Chemistry 266, 2259–2266.

Melendez-Hevia E, Waddell TG, Shelton ED (1993) Optimization of molecular design in the evolution of metabolism: the glycogen molecule. Biochemical Journal 295, 477–483.

Meyer RA, Foley JM (1996) Cellular processes integrating the metabolic response to exercise. In ‘Handbook of physiology. Section 12: Exercise: regulation and integration of multiple systems’. (Eds LR Rowell, JT Shepherd) pp. 841–869. (Oxford University Press: New York)

Mickelson JR, Louis CF (1993) Calcium (Ca2+) regulation in porcine skeleatl muscle - Review. In ‘Pork quality: Genetic and metabolic factors’. pp. 160–184. (Eds E Puolanne, DI Demeyer) (CAB International: Wallingford, UK)

Mickelson JR, Gallant EM, Rempel WE, Johnson KM, Litterer LA, Jacobson BA, Louis CF (1989) Effects of the halothane sensitivity gene on sarcoplasmic reticulum function. The American Journal of Physiology 257, C787–C794.

Milan D, Jeon JT, Looft C, Amarger V, Robic A, Thelander M, Rogel-Gaillard C, Paul S, Iannuccelli N, Rask L, Ronne H, Lundstrom K, Reinsch N, Gellin J, Kalm E, Le Roy P, Chardon P, Andersson L (2000) A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science 288, 1248–1251.
A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjs1Wlu7w%3D&md5=d65a237634e16a53a2d6421658e6aee8CAS | 10818001PubMed |

Monin G (1981) Muscle metabolic type and the DFD condition. In ‘The problem of dark cutting in beef. Current topics in veterinary medicine and animal science’. (Eds DE Hood, PV Tarrant) Vol. 10, pp. 63–81. (Martinus Nijhoff Publishers: The Hague)

Monin G, Sellier P (1985) Pork of low technological quality with a normal rate of muscle pH fall in the intermediate post-mortem period: the case of the Hampshire breed. Meat Science 13, 49–63.
Pork of low technological quality with a normal rate of muscle pH fall in the intermediate post-mortem period: the case of the Hampshire breed.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MbmvFWjuw%3D%3D&md5=ff57fc79945a72070afd515453e3d5b5CAS | 22055445PubMed |

Moody WG, Kemp JD, Mahyuddin M, Johnston DM, Ely DG (1980) Effect of feeding systems, slaughter weight and sex on histological properties of lamb carcasses. Journal of Animal Science 50, 249–256.

Mortimer SI, Pearce KL, Jacobs RH, Hopkins DL, Warner RD, Geesink GH, Edwards JEH, Pethick DW, van der Werf JHJ, Ball AJ (2009) ‘The information nucleus—genetically improving Australian lamb production.’ (Association for the Advancement of Animal Breeding and Genetics)

Newbold RP, Scopes RK (1967) Post-mortem glycolysis in ox skeletal muscle. Effect of temperature on the concentrations of glycolytic intermediates and cofactors. Biochemical Journal 105, 127–136.

Newsholme EA, Leech AR (1983) ‘Biochemistry for the medical sciences.’ (Wiley: New York)

O’Halloran GR, Troy DJ, Buckley DJ (1997a) The relationship between early post-mortem pH and the tenderisation of beef muscles. Meat Science 45, 239–251.
The relationship between early post-mortem pH and the tenderisation of beef muscles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitlKlsL8%3D&md5=11a530c7c10f5e04db7ad5a5abb9ee41CAS | 22061306PubMed |

O’Halloran GR, Troy DJ, Buckley DJ, Reville WJ (1997b) The role of endogenous proteases in the tenderisation of fast glycolysing muscle. Meat Science 47, 187–210.
The role of endogenous proteases in the tenderisation of fast glycolysing muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksFKgsQ%3D%3D&md5=5a21d7909412611a11c672d4ccf72bf3CAS | 22062733PubMed |

Olsson U, Hertzman C, Tornberg E (1994) The influence of low-temperature, type of muscle and electrical-stimulation on the course of rigor-mortis, aging and tenderness of beef muscles. Meat Science 37, 115–131.
The influence of low-temperature, type of muscle and electrical-stimulation on the course of rigor-mortis, aging and tenderness of beef muscles.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3Mbnt1ynuw%3D%3D&md5=b7a5d925f251261bd2ae820a3baf4722CAS | 22059417PubMed |

Ortenblad N, Sjogaard G, Madsen K (2000) Impaired sarcoplasmic reticulum Ca(2+) release rate after fatiguing stimulation in rat skeletal muscle. Journal of Applied Physiology (Bethesda, Md.) 89, 210–217.

Ouali A (1992) Proteolytic and physicochemical mechanisms involved in meat texture development. Biochimie 74, 251–265.
Proteolytic and physicochemical mechanisms involved in meat texture development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XksVKrs78%3D&md5=6a2a0220f9ed21f5e397bf0feb76cf18CAS | 1535227PubMed |

Ouali A, Herrera-Mendez CH, Coulis G, Becila S, Boudjellal A, Aubry L, Sentandreu MA (2006) Revisiting the conversion of muscle into meat and the underlying mechanisms. Meat Science 74, 44–58.
Revisiting the conversion of muscle into meat and the underlying mechanisms.Crossref | GoogleScholarGoogle Scholar | 22062715PubMed |

Park S, Scheffler TL, Gunawan AM, Shi H, Zeng C, Hannon KM, Grant AL, Gerrard DE (2009) Chronic elevated calcium blocks AMPK-induced GLUT-4 expression in skeletal muscle. American Journal of Physiology. Cell Physiology 296, C106–C115.
Chronic elevated calcium blocks AMPK-induced GLUT-4 expression in skeletal muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsFCitg%3D%3D&md5=91989fd0db2c28020d28bb496a7364d2CAS | 18971392PubMed |

Pearson AM, Young RB (1989) ‘Muscle and meat biochemistry.’ (Academic Press Inc.: San Diego, CA, USA)

Petersen GV, Blackmore DK (1982) The effect of different slaughter methods on the post-mortem glycolysis of muscle in lambs. New Zealand Veterinary Journal 30, 195–198.
The effect of different slaughter methods on the post-mortem glycolysis of muscle in lambs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2Mznt1Oltw%3D%3D&md5=1ec46e37ffbb90fa3a92c143d11954b8CAS | 16030845PubMed |

Pethick DW, Cummins L, Gardner GE, Knee BW, McDowell M, McIntyre BW, Tudor G, Walker PJ, Warner RD (1999) The regulation by nutrition of glycogen in the muscle of ruminants. Recent Advances in Animal Nutrition in Australia. 12, 145–151.

Pethick D, Pleasants A, Gee A, Hopkins D, Ross IR (2006) Eating quality of commercial meat cuts from Australian lambs and sheep. In ‘Proceedings of the New Zealand Society of Animal Production’. pp. 363–367. (New Zealand Society of Animal Production)

Pöso AR, Puolanne E (2005) Carbohydrate metabolism in meat animals. Meat Science 70, 423–434.
Carbohydrate metabolism in meat animals.Crossref | GoogleScholarGoogle Scholar | 22063742PubMed |

Przybylski W, Vernin P, Monin G (1994) Relationship between glycolytic potential and ultimate pH in bovine, porcine and ovine muscles. Journal of Muscle Foods 5, 245–255.
Relationship between glycolytic potential and ultimate pH in bovine, porcine and ovine muscles.Crossref | GoogleScholarGoogle Scholar |

Purchas RW, Aungsupakorn R (1993) Further investigations into the relationship between ultimate pH and tenderness for beef samples from bulls and steers. Meat Science 34, 163–178.
Further investigations into the relationship between ultimate pH and tenderness for beef samples from bulls and steers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXksVOqsL0%3D&md5=d32768ebd3b63090e0b29ed548ec9569CAS | 22060661PubMed |

Ren JM, Hultman E (1989) Regulation of glycogenolysis in human skeletal muscle. Journal of Applied Physiology (Bethesda, Md.) 67, 2243–2248.

Ren JM, Broberg S, Sahlin K, Hultman E (1990) Influence of reduced glycogen level on glycogenolysis during short-term stimulation in man. Acta Physiologica Scandinavica 139, 467–474.
Influence of reduced glycogen level on glycogenolysis during short-term stimulation in man.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlt12rtLs%3D&md5=cf5b925364cde0d814107806156f6721CAS | 2239350PubMed |

Richter EA, Galbo H (1986) High glycogen levels enhance glycogen breakdown in isolated contracting skeletal muscle. Journal of Applied Physiology (Bethesda, Md.) 61, 827–831.

Richter EA, Ruderman NB, Gavras H, Belur ER, Galbo H (1982) Muscle glycogenolysis during exercise: dual control by epinephrine and contractions. The American Journal of Physiology 242, E25–E32.

Roach PJ, Depaoli-Roach AA, Hurley TD, Tagliabracci VS (2012) Glycogen and its metabolism: some new developments and old themes. Biochemical Journal 441, 763–787.
Glycogen and its metabolism: some new developments and old themes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFKktg%3D%3D&md5=477ba837052011df03b876bf9c3d5678CAS | 22248338PubMed |

Robergs RA (2001) Exercise-induced metabolic acidosis: where do the protons come from? Sportscience 5, R502–R516.

Robergs RA, Ghiasvand F, Parker D (2004) Biochemistry of exercise-induced metabolic acidosis. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 287, R502–R516.
Biochemistry of exercise-induced metabolic acidosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVaqt7g%3D&md5=898484d8fa91a2117f20b4be1937c3c8CAS | 15308499PubMed |

Roncales P, Geesink GH, van Laack RLJM, Jaime I, Beltran JA, Barnier VMH, Smulders FJM (1995) Meat tenderisation: enzymatic mechanisms. In ‘Expression of tissue proteinases and regulation of protein degradation as related to meat quality’. pp. 311–332. (Eds A Ouali, DI Demeyer, FJM Smulders) (ECCEAMST: Utrecht, the Netherlands)

Rosenvold K, Essen-Gustavsson B, Andersen HJ (2003) Dietary manipulation of pro- and macroglycogen in porcine skeletal muscle. Journal of Animal Science 81, 130–134.

Rosenvold K, Borup U, Therkildsen M (2010) Stepwise chilling: Tender pork without compromising water-holding capacity. Journal of Animal Science 88, 1830–1841.
Stepwise chilling: Tender pork without compromising water-holding capacity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVWrs78%3D&md5=2dff5a0c107546f38a4631b51511eb18CAS | 20118418PubMed |

Rossi D, Sorrentino V (2002) Molecular genetics of ryanodine receptors Ca2+- release channels. Cell Calcium 32, 307–319.
Molecular genetics of ryanodine receptors Ca2+- release channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtFKntbo%3D&md5=4345a9c00565459f9f3f01f8e4209192CAS | 12543091PubMed |

Sahlin K (1978) Intracellular pH and energy metabolism in skeletal muscle of man with specific reference to exercise. Acta Physiologica Scandinavica 455, 7–56.

Sahlin K (1985) NADH in human skeletal muscle during sort-term intense exercise. European Journal of Physiology 403, 193–196.
NADH in human skeletal muscle during sort-term intense exercise.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhtFSlsbk%3D&md5=9ddd1f2c09fa0bbf74f3986e90a53b2fCAS | 3982970PubMed |

Sammel LM, Hunt MC, Kropf DH, Hachmeister KA, Kastner CL, Johnson DE (2002) Influence of chemical characteristics of beef inside and outside semimembranosus on color traits. Journal of Food Science 67, 1323–1330.
Influence of chemical characteristics of beef inside and outside semimembranosus on color traits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvVyqsb4%3D&md5=0704891bf821bf0a99289d18ec1a063fCAS |

Scheffler TL, Gerrard DE (2007) Mechanisms controlling pork quality development: The biochemistry controlling postmortem energy metabolism. Meat Science 77, 7–16.
Mechanisms controlling pork quality development: The biochemistry controlling postmortem energy metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVOgtr0%3D&md5=162fdaf99d4b5b55f39699a837224fb3CAS | 22061391PubMed |

Scheffler TL, Park S, Gerrard DE (2011) Lessons to learn about postmortem metabolism using the AMPK gamma 3(R200Q) mutation in the pig. Meat Science 89, 244–250.
Lessons to learn about postmortem metabolism using the AMPK gamma 3(R200Q) mutation in the pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptlagtLc%3D&md5=57ae2d8d2a4f4e4471a4ad0ab1c7eaf9CAS | 21632185PubMed |

Schwägele F, Honikel KO (1988) Studies in postmortem metabolism of PSE-prone pork muscles. In ‘Proceedings of the 34th International Congress of Meat Science and Technology’. pp. 26–28.

Schwägele F, Haschke C, Honikel KO, Krauss G (1996) Enzymological investigations on the causes for the PSE-syndrome. 1. Comparative studies on pyruvate kinase from PSE- and normal pig muscles. Meat Science 44, 27–40.
Enzymological investigations on the causes for the PSE-syndrome. 1. Comparative studies on pyruvate kinase from PSE- and normal pig muscles.Crossref | GoogleScholarGoogle Scholar | 22060753PubMed |

Scopes RK (1974) Studies with a reconstituted muscle glycolytic system. Biochemical Journal 142, 79–86.

Scott ID, Nicholls DG (1980) Energy transduction in intact synaptosomes—influence of plasma membrane depolarisation in the respiration and membrane potential of internal mitochondria determine in situ. Biochemical Journal 186, 21–33.

Sellier P, Monin G (1994) Genetics of pig meat quality: A review. Journal of Muscle Foods 5, 187–219.
Genetics of pig meat quality: A review.Crossref | GoogleScholarGoogle Scholar |

Shackelford SD, Koohmaraie M, Miller MF, Crouse JD, Reagan JO (1991) An evaluation of tenderness of the longissimus muscle of Angus by Hereford versus Brahman crossbred heifers. Journal of Animal Science 69, 171–177.

Shackelford SD, Koohmaraie M, Savell JW (1994) Evaluation of longissimus-dorsi muscle pH at 3 hours postmortem as a predictor of beef tenderness. Meat Science 37, 195–204.
Evaluation of longissimus-dorsi muscle pH at 3 hours postmortem as a predictor of beef tenderness.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3Mbnt1yltA%3D%3D&md5=1c601bc0133cbfaa76caf57f401ca475CAS | 22059494PubMed |

Shearer J, Marchand I, Tarnopolsky MA, Dyck DJ, Graham TE (2001) Pro- and macroglycogenolysis during repeated exercise: roles of glycogen content and phosphorylase activation. Journal of Applied Physiology (Bethesda, Md.) 90, 880–888.

Shen QW, Du M (2005) Role of AMP-activated protein kinase in the glycolysis of postmortem muscle. Journal of the Science of Food and Agriculture 85, 2401–2406.
Role of AMP-activated protein kinase in the glycolysis of postmortem muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKjsbjM&md5=eccf4f33c257482b84a9e3ff32717a78CAS |

Shen QW, Means WJ, Thompson SA, Underwood KR, Zhu MJ, McCormick RJ, Ford SP, Du M (2006a) Pre-slaughter transport, AMP-activated protein kinase, glycolysis, and quality of pork loin. Meat Science 74, 388–395.
Pre-slaughter transport, AMP-activated protein kinase, glycolysis, and quality of pork loin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntlWrt74%3D&md5=d20e35aa5c05581277f37256885ef6fbCAS | 22062850PubMed |

Shen QW, Means WJ, Underwood KR, Thompson SA, Zhu MJ, McCormick RJ, Ford SP, Ellis M, Du M (2006b) Early post-mortem AMP-activated protein kinase (AMPK) activation leads to phosphofructokinase-2 and -1 (PFK-2 and PFK-1) phosphorylation and the development of pale, soft, and exudative (PSE) conditions in porcine longissimus muscle. Journal of Agricultural and Food Chemistry 54, 5583–5589.
Early post-mortem AMP-activated protein kinase (AMPK) activation leads to phosphofructokinase-2 and -1 (PFK-2 and PFK-1) phosphorylation and the development of pale, soft, and exudative (PSE) conditions in porcine longissimus muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtF2qsrY%3D&md5=7607532a38b9e90529bf1ea3f9ce299fCAS | 16848549PubMed |

Shen QWW, Gerrard DE, Du M (2008) Compound C, an inhibitor of AMP-activated protein kinase, inhibits glycolysis in mouse longissimus dorsi postmortem. Meat Science 78, 323–330.
Compound C, an inhibitor of AMP-activated protein kinase, inhibits glycolysis in mouse longissimus dorsi postmortem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlCrtr7M&md5=d1fe4d8b210629909b521a5ee3757d50CAS |

Simmons NJ, Singh K, Dobbie PM, Devine CE (1996) The effect of pre-rigor holding temperature on calpain and calpastatin activity and meat tenderness. In ‘42nd International Congress of Meat Science and Technology’. Lillehammer, Norway. (ICoMST)

Simmons NJ, Young OA, Dobbie PM, Singh K, Thompson BC, Speck PA (1997) Post-mortem calpain-system kinetics in lamb: Effects of clenbuterol and preslaughter exercise. Meat Science 47, 135–146.
Post-mortem calpain-system kinetics in lamb: Effects of clenbuterol and preslaughter exercise.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXns1yitbk%3D&md5=68489722692ef35ff5ed23868c904eefCAS | 22062624PubMed |

Smulders FJM, Marsh BB, Swartz DR, Russell RL, Hoenecke ME (1990) Beef tenderness and sarcomere-length. Meat Science 28, 349–363.
Beef tenderness and sarcomere-length.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MbmvFagsQ%3D%3D&md5=7e4dc6cb5c35de1a3948efe9fc27fddeCAS |

Spriet LL, Berardinucci L, Marsh DR, Campbell CB, Graham TE (1990) Glycogen content has no effect on skeletal muscle glycogenolysis during short-term tetanic stimulation. Journal of Applied Physiology (Bethesda, Md.) 68, 1883–1888.

Stanley WC, Connett RJ (1991) Regulation of muscle carbohydrate metabolism during exercise. The FASEB Journal 5, 2155–2159.

Støier S, Aaslyng MD, Olsen EV, Henckel P (2001) The effect of stress during lairage and stunning on muscle metabolism and drip loss in Danish pork. Meat Science 59, 127–131.
The effect of stress during lairage and stunning on muscle metabolism and drip loss in Danish pork.Crossref | GoogleScholarGoogle Scholar | 22062670PubMed |

Strasburg GM, Chiang W (2009) Pale, soft, exudative turkey—The role of ryanodine receptor variation in meat quality. Poultry Science 88, 1497–1505.
Pale, soft, exudative turkey—The role of ryanodine receptor variation in meat quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1Omtbc%3D&md5=a6fd5a58ad40502ec88d5b5212f4240dCAS | 19531723PubMed |

Talmant A, Monin G, Briand M, Dadet M, Briand Y (1986) Activities of metabolic and contractile enzymes in 18 bovine muscles. Meat Science 18, 23–40.
Activities of metabolic and contractile enzymes in 18 bovine muscles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXjtFGisg%3D%3D&md5=7456e283964d2bd8b8f135e9b61f72edCAS | 22055463PubMed |

Tarrant PV (1989) Animal behavior and environment in the dark-cutting condition in beef—a review. Irish Journal of Food Science and Technology 13, 1–21.

Tarrant PV, Mothersill C (1977) Glycolysis and associated changes in beef carcasses. Journal of the Science of Food and Agriculture 28, 739–749.
Glycolysis and associated changes in beef carcasses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXls1Kitbg%3D&md5=03dc1ca58578fb9c995d87844c8b3af0CAS |

Tarrant PV, Sherington J (1980) An investigation of ultimate pH in the muscles of commercial beef carcasses. Meat Science 4, 287–297.
An investigation of ultimate pH in the muscles of commercial beef carcasses.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MbmvFarsQ%3D%3D&md5=0e0d39270ae3e48932adc82bf3c3de89CAS | 22055770PubMed |

Tornberg E (1996) Biophysical aspects of meat tenderness. Meat Science 43, 175–191.
Biophysical aspects of meat tenderness.Crossref | GoogleScholarGoogle Scholar |

Totland GK, Kryvi H (1991) Distribution patterns of muscle fibre types in major muscles of the bull (Bos taurus). Anatomy and Embryology 184, 441–450.
Distribution patterns of muscle fibre types in major muscles of the bull (Bos taurus).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38%2FnsVGktA%3D%3D&md5=4234351e6edf7cd147a67716958eba4cCAS | 1835822PubMed |

Troy DJ, Tarrant VP, Harrington MG (1986) Electrophoretic analysis of changes in beef myofibrillar proteins during the early postmortem period. Biochemical Society Transactions 14, 436–438.

Tullson PC, Terjung RL (1991) Adenine-nucleotide synthesis in exercising and endurance-trained skeletal muscle. The American Journal of Physiology 261, C342–C347.

Tullson PC, Rundell KW, Sabina RL, Terjung RL (1996) Creatine analogue beta-guanidinopropionic acid alters skeletal muscle AMP deaminase activity. American Journal of Physiology. Cell Physiology 270, C76–C85.

Tume RK (1979) Post-mortem electrical stimulation of muscle and its effects on sarcoplasmic reticulum adenosine triphosphatase. Australian Journal of Biological Sciences 32, 163–176.

van der Wal PG, Engel B, Reimert HGM (1999) The effect of stress, applied immediately before stunning, on pork quality. Meat Science 53, 101–106.
The effect of stress, applied immediately before stunning, on pork quality.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MbnsFClsg%3D%3D&md5=39a84174d3d96ee672654b11d9667d2dCAS | 22063086PubMed |

Vandenberghe K, Richter EA, Hespel P (1999) Regulation of glycogen breakdown by glycogen level in contracting rat muscle. Acta Physiologica Scandinavica 165, 307–314.
Regulation of glycogen breakdown by glycogen level in contracting rat muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitVejtbY%3D&md5=d2e65a3554264d072260152abc1246b2CAS | 10192181PubMed |

Vestergaard M, Oksbjerg N, Henckel P (2000) Influence of feeding intensity, grazing and finishing feeding on muscle fibre characteristics and meat colour of semitendinosus, longissimus dorsi and supraspinatus muscles of young bulls. Meat Science 54, 177–185.
Influence of feeding intensity, grazing and finishing feeding on muscle fibre characteristics and meat colour of semitendinosus, longissimus dorsi and supraspinatus muscles of young bulls.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MbntlCgtw%3D%3D&md5=d0d841f609750d8e3769308d7e87327eCAS | 22060614PubMed |

Warner RD, Bond JJ, Kerr MG (2000) Meat quality traits in lamb m.longissimus thoracis et lumborum: the effect of pre-slaughter stress and electrical stimulation. In ‘Proceedings 46th International Congress of Meat Science and Technology’. Buenes Aries, Argentina. (ICoMST)

Warner RD, Greenwood PL, Pethick DW, Ferguson DM (2010) Genetic and environmental effects on meat quality. Meat Science 86, 171–183.
Genetic and environmental effects on meat quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1Cntr4%3D&md5=3d78893cb6b54556286f3f5646a745c9CAS | 20561754PubMed |

Warner RD, Dunshea FR, Gutzke D, Lau J, Kearney G (2014) Factors influencing the incidence of high rigor temperature in beef carcasses in Australia. Animal Production Science 54, 363–374.
Factors influencing the incidence of high rigor temperature in beef carcasses in Australia.Crossref | GoogleScholarGoogle Scholar |

Warriss PD (1990) The handling of cattle pre-slaughter and its effects on carcass and meat quality. Applied Animal Behaviour Science 28, 171–186.
The handling of cattle pre-slaughter and its effects on carcass and meat quality.Crossref | GoogleScholarGoogle Scholar |

Warriss PD, Brown SN, Nute GR, Knowles TG, Edwards JE, Perry AM, Johnson SP (1995) Potential interactions between the effects of preslaughter stress and postmortem electrical-stimulation of the carcasses on meat quality in pigs. Meat Science 41, 55–68.
Potential interactions between the effects of preslaughter stress and postmortem electrical-stimulation of the carcasses on meat quality in pigs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3Mbntlagug%3D%3D&md5=a759d59b112cb5b7462b1ae4dc32570eCAS | 22060113PubMed |

Watson R, Gee A, Polkinghorne R, Porter M (2008) Consumer assessment of eating quality - development of protocols for Meat Standards Australia (MSA) testing. Australian Journal of Experimental Agriculture 48, 1360–1367.
Consumer assessment of eating quality - development of protocols for Meat Standards Australia (MSA) testing.Crossref | GoogleScholarGoogle Scholar |

Westerblad H, Allen DG, Bruton JD, Andrade FH, Lannergren J (1998) Mechanisms underlying the reduction of isometric force in skeletal muscle fatigue. Acta Physiologica Scandinavica 162, 253–260.
Mechanisms underlying the reduction of isometric force in skeletal muscle fatigue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitlGqt7Y%3D&md5=3afc9dd2da520b9cb041ea8e33482673CAS | 9578370PubMed |

Westerblad H, Allen DG, Lannergren J (2002) Muscle fatigue: lactic acid or inorganic phosphate the major cause? News in Physiological Sciences 17, 17–21.

Wheeler TL, Savell JW, Cross HR, Lunt DK, Smith SB (1990a) Effect of postmortem treatments on the tenderness of meat from Hereford, Brahman and Brahman-cross beef-cattle. Journal of Animal Science 68, 3677–3686.

Wheeler TL, Savell JW, Cross HR, Lunt DK, Smith SB (1990b) Mechanisms associated with the variation in tenderness of meat from Brahman and Hereford cattle. Journal of Animal Science 68, 4206–4220.

Winder WW, Thomson DM (2007) Cellular energy sensing and signaling by AMP-activated protein kinase. Cell Biochemistry and Biophysics 47, 332–347.
Cellular energy sensing and signaling by AMP-activated protein kinase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnt1Clur8%3D&md5=5ec26ea6164a9a11060366311e3809c9CAS | 17652779PubMed |

Wulf DM, Emnett RS, Leheska JM, Moeller SJ (2002) Relationships among glycolytic potential, dark cutting (dark, firm, and dry) beef, and cooked beef palatability. Journal of Animal Science 80, 1895–1903.

Young JF, Bertram HC, Oksbjerg N (2009) Rest before slaughter ameliorates pre-slaughter stress-induced increased drip loss but not stress-induced increase in the toughness of pork. Meat Science 83, 634–641.
Rest before slaughter ameliorates pre-slaughter stress-induced increased drip loss but not stress-induced increase in the toughness of pork.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGns73E&md5=577576fc848da33a3afdd4799480bb43CAS | 20416646PubMed |