Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

Eastern grey kangaroo (Macropus giganteus) myofibres. 1. A simplified classification method using two commercially available antibodies

N. B. Spiegel A B E , W. H. Johns C , S. D. Sinclair C , P. C. Wynn C D , J. M. Thompson A and P. L. Greenwood C F
+ Author Affiliations
- Author Affiliations

A School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.

B Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia.

C Industry & Investment NSW, University of New England, Armidale, NSW 2351, Australia.

D E. H. Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.

E Present address: School of Environmental Science, Murdoch University, Murdoch, WA 6150, Australia.

F Corresponding author. Email: paul.greenwood@industry.nsw.gov.au

Animal Production Science 50(6) 386-392 https://doi.org/10.1071/AN09195
Submitted: 11 December 2009  Accepted: 14 April 2010   Published: 11 June 2010

Abstract

Skeletal muscles from eastern grey kangaroos (Macropus giganteus) were assessed for myofibre contractile and metabolic characteristics using immunocytochemical and histological staining of serial sections. Myofibre classification using monoclonal antibodies that typically bind to mammalian slow (clone WB-MHC), fast (clone MY-32) and Types 1, 2X and 2B (clone S5 8H2) myosin heavy chains was validated using acid- and alkali-preincubated myofibrillar ATPase, NADH and α-glycerophosphate dehydrogenase stains. Myofibres were classified as Type 1 (slow oxidative), Type 2A (fast oxidative-glycolytic), Type 2X/2B (fast glycolytic) or intermediate or transitional myofibre Types 2C (Type 1–Type 2A intermediate) and 2AX/B (Type 2A–Type 2X/2B intermediate). The Type 2 (fast) antibody (clone MY-32) used in the present study did not bind to a subset of fast myofibres in any of the eight kangaroo muscles investigated. These myofibres were identified as Type 2A using clone S5 8H2 and on the basis of the histochemical staining profile. Hence, a simplified immunostaining system using only clones WB-MHC (anti-Type 1) and MY-32 (anti-Type 2X/2B) allowed five myofibre types to be identified based on the staining pattern and intensity of staining for the two antibodies. It is concluded that the myofibres of muscles from kangaroos can be quickly classified into five types using two commercially available antibodies. This method is directly applicable for routine investigations into the myofibre properties of commercially important muscles from the kangaroo musculature and, when combined with enzymatic assays for oxidative and glycolytic activity, will allow for a better understanding of factors influencing the quality of meat from kangaroos.

Additional keyword: macropod.


Acknowledgements

Financial support was provided by the Rural Industries Research and Development Corporation (RIRDC) and the Kangaroo Industry Association of Australia (KIAA). The assistance provided by technical staff of the NSW Department of Primary Industries Beef Industry Centre of Excellence and Dr Ian Colditz (CSIRO, Armidale, NSW, Australia) is also gratefully acknowledged. Constructive editorial comments provided by Dr Paul Hopwood during the preparation of this manuscript are greatly appreciated. The authors also acknowledge Dr Brigitte Picard (Institut National de la Recherch Agronomique) who provided antibody S5 8H2.


References


Anapol F, Herring SW (2000) Ontogeny of histochemical fibre types and muscle function in the masseter muscle of miniature swine. American Journal of Physical Anthropology 112, 595–613.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Arguello A, Lopez-Fernandez JL, Rivero JL (2001) Limb myosin heavy chain isoproteins and muscle fibre types in the adult goat (Capra hircus). The Anatomical Record 264, 284–293.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Dennington S, Baldwin J (1988) Biochemical correlates of energy-metabolism in muscles used to power hopping by kangaroos. Australian Journal of Zoology 36, 229–240.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Duris MP, Picard B, Geay Y (2000) Specificity of different anti-myosin heavy chain antibodies in bovine muscle. Meat Science 55, 67–78.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Ford GL, Fogerty AC (1982) The fatty acids of kangaroo and wallaby meat. CSIRO Food Research Quarterly 42, 57–60.
CAS |
open url image1

Gardner GE, Pethick DW, Greenwood PL, Hegarty RS (2006) The effect of genotype and plane of nutrition on rate of pH decline post mortem and the expression of enzymatic markers of metabolism in lamb carcases. Australian Journal of Agricultural Research 57, 661–670.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Gardner GE, Hopkins DL, Greenwood PL, Cake MA, Boyce MD, Pethick DW (2007) Sheep genotype, age and muscle type affect the expression of metabolic enzyme markers. Australian Journal of Experimental Agriculture 47, 1180–1189.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Greenwood PL, Davis J, Gaunt GM, Ferrier GR (2006a) Influences on the loin and cellular characteristics of the m. longissimus lumborum of Australian Poll Dorset-sired lambs. Australian Journal of Agricultural Research 57, 1–12.
Crossref | GoogleScholarGoogle Scholar | open url image1

Greenwood PL, Gardner GE, Hegarty RS (2006b) Lamb myofibre characteristics are influenced by sire estimated breeding values and pastoral nutritional system. Australian Journal of Agricultural Research 57, 627–639.
Crossref | GoogleScholarGoogle Scholar | open url image1

Greenwood PL, Harden S, Hopkins DL (2007) Myofibre characteristics of ovine longissimus and semitendinosus muscles are influenced by sire breed, gender, rearing type, age, and carcass weight. Australian Journal of Experimental Agriculture 47, 1137–1146.
Crossref | GoogleScholarGoogle Scholar | open url image1

Greenwood PL, Tomkins NW, Hunter RA, Allingham PG, Harden S, Harper GS (2009) Bovine myofiber characteristics are influenced by postweaning nutrition. Journal of Animal Science 87, 3114–3123.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Guth L, Samaha FJ (1970) Procedure for the histochemical demonstration of actomyosin ATPase. Experimental Neurology 28, 365–367.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Hopwood PR (1988) Kangaroos as game meat animals: Carcass meat yields and meat inspection. Australian Journal of Zoology 24, 169–177. open url image1

Lucas CA, Kang LHD, Hoh JFY (2000) Monospecific antibodies against three mammalian fast limb myosin heavy chains. Biochemical and Biophysical Research Communications 272, 303–308.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Maccatrozzo L, Patruno M, Toniolo L, Reggiani C, Mascarello F (2004) Myosin heavy chain 2B isoform is expressed in specialized eye muscles but not in trunk and limb muscles of cattle. European Journal of Histochemistry 48, 357–366.
CAS | PubMed |
open url image1

Novikoff AB, Shin WY, Drucker J (1961) Mitochondrial location of oxidative enzymes: Staining results with two tetrazolium salts. The Journal of Biophysical and Biochemical Cytology 9, 47–61.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

O’Dea K (1988) Kangaroo meat – polyunsaturated and low in fat: Ideal for cholesterol-lowering diets. Australian Zoologist 24, 140–143. open url image1

Ouwerkerk D, Maguire AJ, McMillen L, Klieve AV (2009) Hydrogen utilising bacteria from the forestomach of eastern grey (Macropus giganteus) and red (Macropus rufus) kangaroos. Animal Production Science 49, 1043–1051.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Padykula HA, Herman E (1955) The specificity of the histochemical method for adenosine triphosphatase. The Journal of Histochemistry and Cytochemistry 3, 170–195.
CAS | PubMed |
open url image1

Pette D, Staron RS (2000) Myosin isoforms, muscle fiber types, and transitions. Microscopy Research and Technique 50, 500–509.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Picard B, Cassar-Malek I (2009) Evidence for expression of IIb myosin heavy chain isoforms in some skeletal muscles of Blonde d’Aquitaine bulls. Meat Science 82, 30–36.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Picard B, Duris MP, Jurie C (1998) Classification of bovine muscle fibres by different histochemical techniques. The Histochemical Journal 30, 473–477.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Reggiani C , Mascarello F (2004) Fibre type identification and functional characterization in adult livestock animals. In ‘Muscle development of livestock animals. Physiology, genetics and meat quality’. (Eds MFW te Pas, ME Everts, HP Haagsman) pp. 39–68. (CAB International: Wallingford, UK)

Rehfeldt C, Fiedler I, Dietl G, Ender K (2000) Myogenesis and postnatal muscle cell growth as influenced by selection. Livestock Production Science 66, 177–188.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sinclair AJ, O’Dea K, Dunstan G, Ireland PD, Niall M (1987) Effects on plasma lipids and fatty acid composition of very low fat diets enriched with fish or kangaroo meat. Lipids 22, 523–529.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Spiegel NB (2008) Factors influencing the quality of meat from kangaroos. PhD Thesis, University of Sydney, Australia.

Spiegel NB, Wynn PC, Thompson JM, Greenwood PL (2010) Eastern grey kangaroo (Macropus giganteus) myofibres. 2. Characteristics of eight skeletal muscles. Animal Production Science 50, 393–399.
Crossref | GoogleScholarGoogle Scholar | open url image1

Suzuki A, Cassens RG (1983) A histochemical study of myofibre types in the serratus ventralis thoracis muscle of sheep during growth. Journal of Animal Science 56, 1447–1458.
CAS | PubMed |
open url image1

Tribe DE, Peel L (1963) Body composition of the kangaroo (Macropus sp.). Australian Journal of Zoology 11, 273–289.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Warner RD, Pethick DW, Greenwood PL, Ponnampalam EN, Banks RG, Hopkins DL (2007) Unravelling the complex interactions between genetics, animal age and nutrition as they impact on tissue deposition, muscle characteristics and quality of Australian sheep meat. Australian Journal of Experimental Agriculture 47, 1229–1238.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wattenburg LW, Leong JL (1960) Effects of coenzyme Q10 and menadione on succinic dehydrogenase activity as measured by tetrazolium salt. The Journal of Histochemistry and Cytochemistry 8, 296–303.
PubMed |
open url image1

Wilson GR, Edwards MJ (2008) Native wildlife on rangelands to minimise methane and produce lower-emission meat: Kangaroos versus livestock. Conservation Letters 1, 119–128.
Crossref | GoogleScholarGoogle Scholar | open url image1

Zhong WWH, Lucas CA, Kang LHD, Hoh JFY (2001) Electrophoretic and immunochemical evidence showing that marsupial limb muscles express the same fast and slow myosin heavy chains as eutherians. Electrophoresis 22, 1016–1020.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Zhong WWH, Lucas CA, Hoh JFY (2008) Myosin isoforms and fibre types in limb muscles of Australian marsupials: adaptations to hopping and non-hopping locomotion. Journal of Comparative Physiology B, Biochemical, Systemic, and Environmental Physiology 178, 47–55.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1