Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Mammalogy Australian Mammalogy Society
Journal of the Australian Mammal Society
RESEARCH ARTICLE

Extensive range contraction predicted under climate warming for a gliding mammal in north-eastern Australia

Fathimah Handayani A B , Ross L. Goldingay A C , Darren McHugh A and Nicole Leslie A
+ Author Affiliations
- Author Affiliations

A School of Environment, Science & Engineering, Southern Cross University, Lismore, NSW 2480, Australia.

B Current address: Forest Research and Development Centre, Bogor, Indonesia.

C Corresponding author. Email: ross.goldingay@scu.edu.au

Australian Mammalogy 41(1) 99-111 https://doi.org/10.1071/AM16062
Submitted: 30 December 2016  Accepted: 12 April 2018   Published: 5 June 2018

Abstract

We used MaxEnt to model the current distribution of the yellow-bellied glider (Petaurus australis) and to predict the likely shift in the species’ future distribution under climate-warming scenarios in the Wet Tropics (WT) Bioregion in north Queensland and in the South-eastern Queensland (SEQld) Bioregion, which encompasses south-eastern Queensland and north-eastern New South Wales. Bioclimatic layers were used to generate models from 57 independent records in the WT and 428 records in SEQld. The modelled distribution of core habitat under current climate showed a good fit to the data, encompassing 91% and 88% of the records in each area, respectively. Modelling of future warming scenarios suggests that large contractions in distribution could occur in both bioregions. In the WT, 98% of core habitat is predicted to be lost under low warming (1°C increase) and 100% under high warming (2−3°C increase) by 2070. In SEQld, 80% of core habitat is predicted to be lost under low warming and 90% under high warming by 2070. These results suggest that this species is highly vulnerable to climate warming and highlight the importance of focusing conservation efforts at the bioregional scale. There is also a need to identify potential thermal refuges and ensure habitat connectivity.


References

Adams-Hosking, C., Grantham, H. S., Rhodes, J. R., Mcalpine, C., and Moss, P. T. (2011). Modelling climate-change-induced shifts in the distribution of the koala. Wildlife Research 38, 122–130.
Modelling climate-change-induced shifts in the distribution of the koala.Crossref | GoogleScholarGoogle Scholar |

ALA (2015). Data sets of Petaurus australis. Atlas of Living Australia. Available at: http://biocache.ala.org.au/occurrences/search?q=qid:1425337189605&fq [accessed 3 March 2015].

ALA (2018). Data processing. Atlas of Living Australia. Available at: https://www.ala.org.au/uncategorised/data-processing/

Alamgir, M., Mukul, S. A., and Turton, S. M. (2015). Modelling spatial distribution of critically endangered Asian elephant and Hoolock gibbon in Bangladesh forest ecosystems under a changing climate. Applied Geography (Sevenoaks, England) 60, 10–19.
Modelling spatial distribution of critically endangered Asian elephant and Hoolock gibbon in Bangladesh forest ecosystems under a changing climate.Crossref | GoogleScholarGoogle Scholar |

Beale, C. M., and Lennon, J. J. (2012). Incorporating uncertainty in predictive species distribution modelling. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 367, 247–258.
Incorporating uncertainty in predictive species distribution modelling.Crossref | GoogleScholarGoogle Scholar |

Beaumont, L. J., Hughes, L., and Poulsen, M. (2005). Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecological Modelling 186, 251–270.
Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions.Crossref | GoogleScholarGoogle Scholar |

Boisvenue, C., and Running, S. W. (2010). Simulations show decreasing carbon stocks and potential for carbon emissions in Rocky Mountain forests over the next century. Ecological Applications 20, 1302–1319.
Simulations show decreasing carbon stocks and potential for carbon emissions in Rocky Mountain forests over the next century.Crossref | GoogleScholarGoogle Scholar |

Bradford, M. G., and Harrington, G. N. (1999). Aerial and ground survey of sap trees of the yellow-bellied glider (Petaurus australis reginae) near Atherton, north Queensland. Wildlife Research 26, 723–729.
Aerial and ground survey of sap trees of the yellow-bellied glider (Petaurus australis reginae) near Atherton, north Queensland.Crossref | GoogleScholarGoogle Scholar |

Brereton, R., Bennett, S., and Mansergh, I. (1995). Enhanced greenhouse climate change and its potential effect on selected fauna of south-eastern Australia: a trend analysis. Biological Conservation 72, 339–354.
Enhanced greenhouse climate change and its potential effect on selected fauna of south-eastern Australia: a trend analysis.Crossref | GoogleScholarGoogle Scholar |

Brown, M., Cooksley, H., Carthew, S. M., and Cooper, S. J. B. (2006). Conservation units and phylogeographic structure of an arboreal marsupial, the yellow-bellied glider (Petaurus australis). Australian Journal of Zoology 54, 305–317.
Conservation units and phylogeographic structure of an arboreal marsupial, the yellow-bellied glider (Petaurus australis).Crossref | GoogleScholarGoogle Scholar |

Bureau of Meteorology and CSIRO (2014). State of the Climate 2014. Available at: http://www.bom.gov.au/state-of-the-climate/documents/state-of-the-climate-2014_low- res.pdf?ref=button [accessed 31 March 2015].

Carroll, C., Dunk, J. R., and Moilanen, A. (2010). Optimizing resiliency of reserve networks to climate change: multispecies conservation planning in the Pacific Northwest, USA. Global Change Biology 16, 891–904.
Optimizing resiliency of reserve networks to climate change: multispecies conservation planning in the Pacific Northwest, USA.Crossref | GoogleScholarGoogle Scholar |

Carthew, S. (2004). Distribution and conservation status of possums and gliders in South Australia. In ‘The Biology of Australian Possums and Gliders’. (Eds R. L. Goldingay, and S. M. Jackson.) pp. 63–70. (Surrey Beatty: Sydney.)

Elith, J., and Graham, C. H. (2009). Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography 32, 66–77.
Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models.Crossref | GoogleScholarGoogle Scholar |

Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. a., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. M. C., Peterson, A. T., Phillips, S. J., Richardson, K., Scachetti-Pereira, R., Schapire, R. E., Soberon, J., Williams, S., Wisz, M. S., and Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151.
Novel methods improve prediction of species’ distributions from occurrence data.Crossref | GoogleScholarGoogle Scholar |

Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., and Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity & Distributions 17, 43–57.
A statistical explanation of MaxEnt for ecologists.Crossref | GoogleScholarGoogle Scholar |

Environment Australia (2000). Revision of the Interim Biogeographic Regionalisation of Australia (IBRA) and the Development of Version 5.1. – Summary Report. Canberra.

Eyre, T. J. (2004). Distribution and conservation status of the possums and gliders of southern Queensland. In ‘The Biology of Australian Possums and Gliders’. (Eds R. L. Goldingay, and S. M. Jackson.) pp. 1–25. (Surrey Beatty: Sydney.)

Eyre, T. J., and Buck, R. G. (2005). The regional distribution of large gliding possums in southern Queensland, Australia. I. The yellow-bellied glider (Petaurus australis). Biological Conservation 125, 65–86.
The regional distribution of large gliding possums in southern Queensland, Australia. I. The yellow-bellied glider (Petaurus australis).Crossref | GoogleScholarGoogle Scholar |

Forero-Medina, G., Joppa, L., and Pimm, S. L. (2011). Restricciones a los Cambios de Rango Altitudinal de Especies a Medida que Cambia el Clima. Conservation Biology 25, 163–171.
Restricciones a los Cambios de Rango Altitudinal de Especies a Medida que Cambia el Clima.Crossref | GoogleScholarGoogle Scholar |

Fourcade, Y., Engler, J. O., Rodder, D., and Secondi, J. (2014). Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS One 9, e97122.
Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias.Crossref | GoogleScholarGoogle Scholar |

Gibson, L., Mcneill, A., de Tores, P., Wayne, A., and Yates, C. (2010). Will future climate change threaten a range restricted endemic species, the quokka (Setonix brachyurus), in south west Australia? Biological Conservation 143, 2453–2461.
Will future climate change threaten a range restricted endemic species, the quokka (Setonix brachyurus), in south west Australia?Crossref | GoogleScholarGoogle Scholar |

Gillson, L., Dawson, T. P., Jack, S., and Mcgeoch, M. A. (2013). Accommodating climate change contingencies in conservation strategy. Trends in Ecology & Evolution 28, 135–142.
Accommodating climate change contingencies in conservation strategy.Crossref | GoogleScholarGoogle Scholar |

Goldingay, R. L., and Quin, D. G. (2004). Components of the habitat of the yellow-bellied glider in north Queensland. In ‘The Biology of Australian Possums and Gliders’. (Eds R. L. Goldingay, and S. M. Jackson.) pp. 369–375. (Surrey Beatty: Sydney.)

Goldingay, R. L., Quin, D. G., and Churchill, S. (2001). Spatial variability in the social organisation of the yellow-bellied glider (Petaurus australis) near Ravenshoe, north Queensland. Australian Journal of Zoology 49, 397–409.
Spatial variability in the social organisation of the yellow-bellied glider (Petaurus australis) near Ravenshoe, north Queensland.Crossref | GoogleScholarGoogle Scholar |

Goldingay, R. L., Harrisson, K. A., Taylor, A. C., Ball, T. M., Sharpe, D. J., and Taylor, D. (2013). Fine-scale genetic response to landscape change in a gliding mammal. PLoS One 8, e80383.
Fine-scale genetic response to landscape change in a gliding mammal.Crossref | GoogleScholarGoogle Scholar |

Goldingay, R. L., McHugh, D., and Parkyn, J. L. (2016). Population monitoring of a threatened gliding mammal in subtropical Australia. Australian Journal of Zoology 64, 413–420.
Population monitoring of a threatened gliding mammal in subtropical Australia.Crossref | GoogleScholarGoogle Scholar |

Graham, C. H., Elith, J., Hijmans, R. J., Guisan, A., Peterson, A. T., Loiselle, B. A., Species, T. N. P., and Group, D. W. (2008). The influence of spatial errors in species occurrence data used in distribution models. Journal of Applied Ecology 45, 239–247.
The influence of spatial errors in species occurrence data used in distribution models.Crossref | GoogleScholarGoogle Scholar |

Guisan, A., and Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling 135, 147–186.
Predictive habitat distribution models in ecology.Crossref | GoogleScholarGoogle Scholar |

Hagger, V., Fisher, D., Schmidt, S., and Blomberg, S. (2013). Assessing the vulnerability of an assemblage of subtropical rainforest vertebrate species to climate change in south-east Queensland. Austral Ecology 38, 465–475.
Assessing the vulnerability of an assemblage of subtropical rainforest vertebrate species to climate change in south-east Queensland.Crossref | GoogleScholarGoogle Scholar |

Hannah, L., Midgley, G. F., Lovejoy, T., Bond, W. J., Bush, M., Lovett, J. C., Scott, D., and Woodward, F. I. (2002). Conservation of biodiversity in a changing climate. Conservation Biology 16, 264–268.
Conservation of biodiversity in a changing climate.Crossref | GoogleScholarGoogle Scholar |

Harrington, G. N., and Sanderson, K. D. (1994). Recent contraction of wet sclerophyll forest in the Wet Tropics of Queensland due to invasion by rainforest. Pacific Conservation Biology 1, 319–327.
Recent contraction of wet sclerophyll forest in the Wet Tropics of Queensland due to invasion by rainforest.Crossref | GoogleScholarGoogle Scholar |

Hernandez, P. A., Graham, C. H., Master, L. L., Albert, D. L., and The, A. D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29, 773–785.
The effect of sample size and species characteristics on performance of different species distribution modeling methods.Crossref | GoogleScholarGoogle Scholar |

Hughes, L. (2003). Climate change and Australia: trends, projections and impacts. Australian Journal of Ecology 28, 423–443.
Climate change and Australia: trends, projections and impacts.Crossref | GoogleScholarGoogle Scholar |

Hughes, L. (2011). Climate change and Australia: key vulnerable regions. Regional Environmental Change 11, 189–195.
Climate change and Australia: key vulnerable regions.Crossref | GoogleScholarGoogle Scholar |

Hughes, A. C. (2014). Fundamentals of GIS for ecology, and species distribution modeling workshop. CAIRNS ATBC WORKSHOP July 2014. Practical tasks: Arc VERSION. Cairns, Australia.

IPCC (2013). ‘Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.’ (Eds T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley.) (Cambridge University Press: Cambridge & New York.)

Jackson, S. M., Morgan, G., Kemp, J. E., Maughan, M., and Stafford, C. M. (2011). An accurate assessment of habitat loss and current threats to the mahogany glider (Petaurus gracilis). Australian Mammalogy 33, 82–92.
An accurate assessment of habitat loss and current threats to the mahogany glider (Petaurus gracilis).Crossref | GoogleScholarGoogle Scholar |

Johnson, G. L., Daly, C., Taylor, G. H., and Hanson, C. L. (2000). Spatial variability and interpolation of stochastic weather simulation model parameters. Journal of Applied Meteorology 39, 778–796.
Spatial variability and interpolation of stochastic weather simulation model parameters.Crossref | GoogleScholarGoogle Scholar |

Kavanagh, R. P. (2004). Distribution and conservation status of possums and gliders in New South Wales. In ‘The Biology of Australian Possums and Gliders’. (Eds R. L. Goldingay, and S. M. Jackson.) pp. 130–148. (Surrey Beatty: Sydney.)

Kearney, M. R., Wintle, B. A., and Porter, W. P. (2010). Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conservation Letters 3, 203–213.
Correlative and mechanistic models of species distribution provide congruent forecasts under climate change.Crossref | GoogleScholarGoogle Scholar |

Laurance, W. F., Carolina Useche, D., Shoo, L. P., Herzog, S. K., Kessler, M., Escobar, F., Brehm, G., Axmacher, J. C., Chen, I. C., Gámez, L. A., Hietz, P., Fiedler, K., Pyrcz, T., Wolf, J., Merkord, C. L., Cardelus, C., Marshall, A. R., Ah-Peng, C., Aplet, G. H., del Coro Arizmendi, M., Baker, W. J., Barone, J., Brühl, C. a., Bussmann, R. W., Cicuzza, D., Eilu, G., Favila, M. E., Hemp, A., Hemp, C., Homeier, J., Hurtado, J., Jankowski, J., Kattán, G., Kluge, J., Krömer, T., Lees, D. C., Lehnert, M., Longino, J. T., Lovett, J., Martin, P. H., Patterson, B. D., Pearson, R. G., Peh, K. S. H., Richardson, B., Richardson, M., Samways, M. J., Senbeta, F., Smith, T. B., Utteridge, T. M. A., Watkins, J. E., Wilson, R., Williams, S. E., and Thomas, C. D. (2011). Global warming, elevational ranges and the vulnerability of tropical biota. Biological Conservation 144, 548–557.
Global warming, elevational ranges and the vulnerability of tropical biota.Crossref | GoogleScholarGoogle Scholar |

Li, R., Xu, M., Hang, M., Wong, G., Qiu, S., Li, X., Ehrenfeld, D., and Li, D. (2015). Climate change threatens giant panda protection in the 21st century. Biological Conservation 182, 93–101.
Climate change threatens giant panda protection in the 21st century.Crossref | GoogleScholarGoogle Scholar |

Lobo, J. M., Jiménez-valverde, A., and Real, R. (2008). AUC : a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography 17, 145–151.
AUC : a misleading measure of the performance of predictive distribution models.Crossref | GoogleScholarGoogle Scholar |

Matthews, S. N., Iverson, L. R., Prasad, A. M., Peters, M. P., and Rodewald, P. G. (2011). Forest ecology and management modifying climate change habitat models using tree species-specific assessments of model uncertainty and life history-factors. Forest Ecology and Management 262, 1460–1472.
Forest ecology and management modifying climate change habitat models using tree species-specific assessments of model uncertainty and life history-factors.Crossref | GoogleScholarGoogle Scholar |

Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J. K., Thomas, C. D., Descimon, H., Huntley, B., Kaila, L., Kullberg, J., Tammaru, T., Tennent, W. J., Thomas, J. A., and Warren, M. (1999). Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579–583.
Poleward shifts in geographical ranges of butterfly species associated with regional warming.Crossref | GoogleScholarGoogle Scholar |

Pearson, R. G., and Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography 12, 361–371.
Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?Crossref | GoogleScholarGoogle Scholar |

Pearson, R. G., Raxworthy, C. J., Nakamura, M., and Peterson, A. T. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography 34, 102–117.
Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar.Crossref | GoogleScholarGoogle Scholar |

Penman, T. D., Pike, D. A., Webb, J. K., and Shine, R. (2010). Predicting the impact of climate change on Australia’s most endangered snake, Hoplocephalus bungaroides. Diversity & Distributions 16, 109–118.
Predicting the impact of climate change on Australia’s most endangered snake, Hoplocephalus bungaroides.Crossref | GoogleScholarGoogle Scholar |

Townsend Peterson, A. T., Papes, M., and Eaton, M. (2007). Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30, 550–560.
Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent.Crossref | GoogleScholarGoogle Scholar |

Phillips, S. J., and Dudık, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175.
Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation.Crossref | GoogleScholarGoogle Scholar |

Phillips, S. J., Anderson, R. P., and Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling 190, 231–259.
Maximum entropy modeling of species geographic distributions.Crossref | GoogleScholarGoogle Scholar |

Prato, T. (2008). Conceptual framework for assessment and management of ecosystem impacts of climate change. Ecological Complexity 5, 329–338.
Conceptual framework for assessment and management of ecosystem impacts of climate change.Crossref | GoogleScholarGoogle Scholar |

QDEHP (2015a). Species profile – Petaurus australis australis (Petauridae). Queensland Department of Environment and Heritage Protection. Available at: https://environment.ehp.qld.gov.au/species-search/details/?id=875 [accessed 31 March 2015].

QDEHP (2015b). Species profile – Petaurus australis unnamed subsp. (Petauridae). Queensland Department of Environment and Heritage Protection. Available at: https://environment.ehp.qld.gov.au/species-search/details/?id=876 [accessed 31 March 2015].

Quin, D., Goldingay, R., Churchil, S., and Engel, D. (1996). Feeding behaviour and food availability of the yellow-bellied glider in north Queensland. Wildlife Research 23, 637–646.
Feeding behaviour and food availability of the yellow-bellied glider in north Queensland.Crossref | GoogleScholarGoogle Scholar |

Rees, M., Paull, D. J., and Carthew, S. M. (2007). Factors influencing the distribution of the yellow-bellied glider (Petaurus australis australis) in Victoria, Australia. Wildlife Research 34, 228–233.
Factors influencing the distribution of the yellow-bellied glider (Petaurus australis australis) in Victoria, Australia.Crossref | GoogleScholarGoogle Scholar |

Reside, A. E., Welbergen, J. A., Phillips, B. L., Wardell-Johnson, G. W., Keppel, G., Ferrier, S., Williams, S. E., and Vanderwal, J. (2014). Characteristics of climate change refugia for Australian biodiversity. Austral Ecology 39, 887–897.
Characteristics of climate change refugia for Australian biodiversity.Crossref | GoogleScholarGoogle Scholar |

Riahi, K., Grübler, A., and Nakicenovic, N. (2007). Scenarios of long-term socio-economic and environmental development under climate stabilization. Technological Forecasting and Social Change 74, 887–935.
Scenarios of long-term socio-economic and environmental development under climate stabilization.Crossref | GoogleScholarGoogle Scholar |

Şekercioğlu, Ç. H., Primack, R. B., and Wormworth, J. (2012). The effects of climate change on tropical birds. Biological Conservation 148, 1–18.
The effects of climate change on tropical birds.Crossref | GoogleScholarGoogle Scholar |

Shi, H., Paull, D., Wen, Z., and Broome, L. (2014). Thermal buffering effect of alpine boulder field microhabitats in Australia: implications for habitat management and conservation. Biological Conservation 180, 278–287.
Thermal buffering effect of alpine boulder field microhabitats in Australia: implications for habitat management and conservation.Crossref | GoogleScholarGoogle Scholar |

Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science 240, 1285–1293.
Measuring the accuracy of diagnostic systems.Crossref | GoogleScholarGoogle Scholar |

Taylor, A. C., Walker, F. M., Goldingay, R. L., Ball, T., and van der Ree, R. (2011). Degree of landscape fragmentation influences genetic isolation among populations of a gliding mammal. PLoS One 6, e26651.
Degree of landscape fragmentation influences genetic isolation among populations of a gliding mammal.Crossref | GoogleScholarGoogle Scholar |

Thuiller, W., Araújo, M. B., and Lavorel, S. (2003). Generalized models vs. classification tree analysis: predicting spatial distributions of plant species at different scales. Journal of Vegetation Science 14, 669–680.
Generalized models vs. classification tree analysis: predicting spatial distributions of plant species at different scales.Crossref | GoogleScholarGoogle Scholar |

van der Ree, R., Ward, S. J., and Handasyde, K. A. (2004). Distribution and conservation status of possums and gliders in Victoria. In ‘The Biology of Australian Possums and Gliders’. (Eds R. L. Goldingay, and S. M. Jackson.) pp. 91–110. (Surrey Beatty: Sydney.)

van Vuuren, D. P., den Elzen, M. G. J., Lucas, P. L., Eickhout, B., Strengers, B. J., van Ruijven, B., Wonink, S., and van Houdt, R. (2007). Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Climatic Change 81, 119–159.
Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs.Crossref | GoogleScholarGoogle Scholar |

VanDerWal, J., Murphy, H. T., Kutt, A. S., Perkins, G. C., Bateman, B. L., Perry, J. J., and Reside, A. E. (2013). Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nature Climate Change 3, 239–243.
Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change.Crossref | GoogleScholarGoogle Scholar |

Wallis, I. R., and Goldingay, R. L. (2014). Does a sap feeding marsupial choose trees with specific chemical characteristics? Australian Journal of Ecology 39, 973–983.
Does a sap feeding marsupial choose trees with specific chemical characteristics?Crossref | GoogleScholarGoogle Scholar |

Wang, T., Campbell, E. M., O’Neill, G. A., and Aitken, S. N. (2012). Projecting future distributions of ecosystem climate niches: uncertainties and management applications. Forest Ecology and Management 279, 128–140.
Projecting future distributions of ecosystem climate niches: uncertainties and management applications.Crossref | GoogleScholarGoogle Scholar |

Williams, S. E., Bolitho, E. E., and Fox, S. (2003). Climate change in Australian tropical rainforests: an impending environmental catastrophe. Proceedings Biological Sciences 270, 1887–1892.
Climate change in Australian tropical rainforests: an impending environmental catastrophe.Crossref | GoogleScholarGoogle Scholar |

Williams, S. E., Shoo, L., Isaac, J., Hoffmann, A., and Langham, G. (2008). Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biology 6, e325.
Towards an integrated framework for assessing the vulnerability of species to climate change.Crossref | GoogleScholarGoogle Scholar |

Winter, J. (1991). North eastern Queensland: some conservation issues highlighted by forest mammals. In ‘Conservation of Australia’s Forest Fauna’. (Ed. D. Lunney.) pp. 113–118. (Royal Zoological Society of New South Wales: Sydney.)

Winter, J. W. (1997). Responses of non-volant mammals to Late Quaternary climatic changes in the Wet Tropics of north-eastern Australia. Wildlife Research 24, 493–511.
Responses of non-volant mammals to Late Quaternary climatic changes in the Wet Tropics of north-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Winter, J. W., Dillewaard, H. A., Williams, S. E., and Bolitho, E. E. (2004). Possums and gliders of north Queensland: distribution and conservation status. In ‘The Biology of Australian Possums and Gliders’. (Eds R. L. Goldingay, and S. M. Jackson.) pp. 26–50. (Surrey Beatty: Sydney.)

Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, A., NCEAS Predicting Species Distributions Working Group (2008). Effects of sample size on the performance of species distribution models. Diversity & Distributions 14, 763–773.
Effects of sample size on the performance of species distribution models.Crossref | GoogleScholarGoogle Scholar |

Woinarski, J. C. Z., Burbidge, A. A., and Harrison, P. L. (2013). ‘The Action Plan for Australian maMmals 2012.’ (CSIRO Publishing: Melbourne.)

WorldClim Global Climate Data (2017). Data for current conditions (~1970–2000). Available at: http://worldclim.org/current#Genericgrids [accessed 19 June 2017].

Young, N., Carter, L., and Evangelista, P. (2011). A MaxEnt Model v3.3.3e Tutorial (ArcGIS v10). Colorado.