A comparison of field and genetic methods for identifying feral cat predation events during wildlife translocations
Ned L. Ryan-Schofield
A
B
C
Abstract
Translocation programs are commonly undertaken to conserve threatened species, but loss of animals to predation after release remains a significant challenge. Feral cats (Felis catus) are a major predator of many native Australian mammals and a significant contributor to translocation failure in this group. However, identifying cat predation as the cause of mortality in the field is challenging and can hinder or delay the implementation of appropriate management actions. We compared field and genetic data collected from 92 cat predation events that occurred during native mammal translocations in South Australia. Our study found that necropsy and genetic evidence obtained through DNA analysis were the most reliable methods for identifying feral cat predation. Field evidence such as cat tracks, scats or collar bite marks were recorded infrequently and inconsistently. Relying solely on field evidence will significantly underestimate predation by feral cats on translocated species and even DNA evidence was found to underestimate impact. We demonstrated the value of intensively monitoring translocated animals post-release so as to facilitate prompt collection of multiple lines of evidence such as necropsy, field evidence and reliable DNA samples. An absence of field evidence should not be used to discount cat predation as a potential cause of mortality in translocation programs.
Keywords: autopsy, bettong, bilby, caching, carcass, genetics, possum, quoll, reintroduction.
References
Adamec, R. E. (1976). The interaction of hunger and preying in the domestic cat (Felis catus): an adaptive hierarchy? Behavioral Biology 18, 263-272.
| Crossref | Google Scholar | PubMed |
Bannister, H. L., Hodgens, P., and Moseby, K. E. (2019). Offspring sex and maternal effects influence the development and natal dispersal of an arboreal marsupial. Journal of Mammalogy 100, 423-434.
| Crossref | Google Scholar |
Bannister, H. L., Letnic, M., Blumstein, D. T., and Moseby, K. E. (2021). Individual traits influence survival of a reintroduced marsupial only at low predator densities. Animal Conservation 24, 904-913.
| Crossref | Google Scholar |
Berry, O., and Sarre, S. D. (2007). Gel‐free species identification using melt‐curve analysis. Molecular Ecology Notes 7, 1-4.
| Crossref | Google Scholar |
Bischoff-Mattson, Z., and Mattson, D. (2009). Effects of simulated mountain lion caching on decomposition of ungulate carcasses. Western North American Naturalist 69, 343-350.
| Crossref | Google Scholar |
Brandle, R., Mooney, T., De Preu, N., Garnett, S., Latch, P., Lindenmayer, D., and Woinarski, J. (2018) Broadscale feral predator and herbivore control for yellow-footed rock-wallabies Petrogale xanthopus ssp. xanthopus: improved resilience for plants and animals. Bounceback. In ‘Recovering Australian Threatened Species: a Book of Hope’. (Eds S Garnett, P Latch, D Lindenmayer, J Woinarski.) pp. 135–146. (CSIRO Publishing: Melbourne, Vic, Australia.)
Brighten, A. L., and Burnside, R. J. (2019). Insights into the feeding ecology of and threats to Sand Cat Felis margarita Loche, 1858 (Mammalia: Carnivora: Felidae) in the Kyzylkum Desert, Uzbekistan. Journal of Threatened Taxa 11, 13492-13496.
| Crossref | Google Scholar |
Burrows, A. M., Ristow, P. G., and D’Amato, M. E. (2017). Preservation of DNA from saliva samples in suboptimal conditions. Forensic Science International: Genetics Supplement Series 6, E80-E81.
| Google Scholar |
Červený, J., and Okarma, H. (2002). Caching prey in trees by Eurasian lynx. Acta Theriologica 47, 505-508.
| Crossref | Google Scholar |
De Ruiter, D. J., and Berger, L. R. (2001). Leopard (Panthera pardus Linneaus) cave caching related to anti‐theft behaviour in the John Nash Nature Reserve, South Africa. African Journal of Ecology 39, 396-398.
| Crossref | Google Scholar |
Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G., and Dickman, C. R. (2016). Invasive predators and global biodiversity loss. Proceedings of the National Academy of Sciences 113, 11261-11265.
| Crossref | Google Scholar | PubMed |
Doherty, T. S., Dickman, C. R., Johnson, C. N., Legge, S. M., Ritchie, E. G., and Woinarski, J. C. (2017). Impacts and management of feral cats Felis catus in Australia. Mammal Review 47, 83-97.
| Crossref | Google Scholar |
Fancourt, B. A. (2015). Making a killing: photographic evidence of predation of a Tasmanian pademelon (Thylogale billardierii) by a feral cat (Felis catus). Australian Mammalogy 37, 120-124.
| Crossref | Google Scholar |
Finlayson, G. R., and Moseby, K. E. (2004). Managing confined populations: the influence of density on the home range and habitat use of reintroduced burrowing bettongs (Bettongia lesueur). Wildlife Research 31, 457.
| Crossref | Google Scholar |
Forrester, T. D., and Wittmer, H. U. (2019). Predator identity and forage availability affect predation risk of juvenile black-tailed deer. Wildlife Biology 2019, 1-12.
| Crossref | Google Scholar |
Ganz, T. R., DeVivo, M. T., Reese, E. M., and Prugh, L. R. (2023). Wildlife whodunnit: forensic identification of predators to inform wildlife management and conservation. Wildlife Society Bulletin 47, e1386.
| Crossref | Google Scholar |
Gibson, D., Lundie-Jenkins, G., Langford, D., Cole, J., and Johnson, K. (1994). Predation by feral cats, Felis catus, on the rufous hare-wallaby, Lagorchestes hirsutus, in the Tanami Desert. Australian Mammalogy 17, 103-107.
| Crossref | Google Scholar |
Glen, A. S., Berry, O., Sutherland, D. R., Garretson, S., Robinson, T., and De Tores, P. J. (2010). Forensic DNA confirms intraguild killing of a chuditch (Dasyurus geoffroii) by a feral cat (Felis catus). Conservation Genetics 11, 1099-1101.
| Crossref | Google Scholar |
Gunter, R. (1951). The absolute threshold for vision in the cat. The Journal of Physiology 114, 8-15.
| Crossref | Google Scholar | PubMed |
Hardman, B., Moro, D., and Calver, M. (2016). Direct evidence implicates feral cat predation as the primary cause of failure of a mammal reintroduction programme. Ecological Management & Restoration 17, 152-158.
| Crossref | Google Scholar |
Heffner, R. S., and Heffner, H. E. (1985). Hearing range of the domestic cat. Hearing Research 19, 85-88.
| Crossref | Google Scholar | PubMed |
Hughes, A. (1985). New perspectives in retinal organisation. Progress in Retinal Research 4, 243-313.
| Crossref | Google Scholar |
James, H., Acharya, A., Taylor, J., and Freak, M. (2002). A case of bitten bettongs. The Journal of Forensic Odonto-Stomatology 20, 10-12.
| Google Scholar | PubMed |
Judge, S., Lippert, J. S., Misajon, K., Hu, D., and Hess, S. C. (2012). Videographic evidence of endangered species depredation by feral cat. Pacific Conservation Biology 18, 293-296.
| Crossref | Google Scholar |
Krofel, M., Južnič, D., and Allen, M. L. (2021). Scavenging and carcass caching behavior by European wildcat (Felis silvestris). Ecological Research 36, 556-561.
| Crossref | Google Scholar |
Leahy, L., Legge, S. M., Tuft, K., McGregor, H. W., Barmuta, L. A., Jones, M. E, and Johnson, C. N. (2016). Amplified predation after fire suppresses rodent populations in Australia’s tropical savannas. Wildlife Research 42, 705-716.
| Crossref | Google Scholar |
Marlow, N. J., Thomas, N. D., Williams, A. A., Macmahon, B., Lawson, J., Hitchen, Y., Angus, J., and Berry, O. (2015). Cats (Felis catus) are more abundant and are the dominant predator of woylies (Bettongia penicillata) after sustained fox (Vulpes vulpes) control. Australian Journal of Zoology 63, 18-27.
| Crossref | Google Scholar |
McGregor, H., Legge, S., Jones, M. E., and Johnson, C. N. (2015). Feral cats are better killers in open habitats, revealed by animal-borne video. PLoS One 10, e0133915.
| Crossref | Google Scholar | PubMed |
Moseby, K., and McGregor, H. (2022). Feral cats use fine scale prey cues and microhabitat patches of dense vegetation when hunting prey in arid Australia. Global Ecology and Conservation 35, e02093.
| Crossref | Google Scholar |
Moseby, K., and O’Donnell, E. (2003). Reintroduction of the greater bilby, Macrotis lagotis (Reid) (Marsupialia: Thylacomyidae), to northern South Australia: survival, ecology and notes on reintroduction protocols. Wildlife Research 30, 15-27.
| Crossref | Google Scholar |
Moseby, K., and Read, J. (2006). The efficacy of feral cat, fox and rabbit exclusion fence designs for threatened species protection. Biological Conservation 127, 429-437.
| Crossref | Google Scholar |
Moseby, K., Read, J., Paton, D., Copley, P., Hill, B., and Crisp, H. (2011). Predation determines the outcome of 10 reintroduction attempts in arid South Australia. Biological Conservation 144, 2863-2872.
| Crossref | Google Scholar |
Moseby, K. E., Cameron, A., and Crisp, H. A. (2012). Can predator avoidance training improve reintroduction outcomes for the greater bilby in arid Australia? Animal behaviour 83, 1011-1021.
| Crossref | Google Scholar |
Moseby, K., Peacock, D., and Read, J. (2015). Catastrophic cat predation: a call for predator profiling in wildlife protection programs. Biological Conservation 191, 331-340.
| Crossref | Google Scholar |
Moseby, K. E., Blumstein, D. T., Letnic, M., and West, R. (2018). Choice or opportunity: are post-release social groupings influenced by familiarity or reintroduction protocols? Oryx 54, 215-221.
| Crossref | Google Scholar |
Moseby, K. E., Brandle, R., Hodgens, P., and Bannister, H. L. (2020). Can reintroductions to degraded habitat succeed? A test using the common brushtail possum. Austral Ecology 45, 675-690.
| Crossref | Google Scholar |
Moseby, K., Hodgens, P., Peacock, D., Mooney, P., Brandle, R., Lynch, C., West, R., Young, C., Bannister, H., and Copley, P. (2021). Intensive monitoring, the key to identifying cat predation as a major threat to native carnivore (Dasyurus geoffroii) reintroduction. Biodiversity and Conservation 30, 1547-1571.
| Crossref | Google Scholar |
Peelle, L. E., Wirsing, A. J., Pilgrim, K. L., and Schwartz, M. K. (2019). Identifying predators from saliva at kill sites with limited remains. Wildlife Society Bulletin 43, 546-557.
| Crossref | Google Scholar |
Priddel, D., and Wheeler, R. (2004). An experimental translocation of brush-tailed bettongs (Bettongia penicillata) to western New South Wales. Wildlife Research 31, 421-432.
| Crossref | Google Scholar |
Radford, J. Q., Woinarski, J. C., Legge, S., Baseler, M., Bentley, J., Burbidge, A. A., Bode, M., Copley, P., Dexter, N., and Dickman, C. R. (2018). Degrees of population-level susceptibility of Australian terrestrial non-volant mammal species to predation by the introduced red fox (Vulpes vulpes) and feral cat (Felis catus). Wildlife Research 45, 645-657.
| Crossref | Google Scholar |
Ross, A. K., Letnic, M., Blumstein, D. T., and Moseby, K. E. (2019). Reversing the effects of evolutionary prey naiveté through controlled predator exposure. Journal of Applied Ecology 56, 1761-1769.
| Crossref | Google Scholar |
Rouco, C., Jewell, C., Richardson, K., French, N., Buddle, B., and Tompkins, D. (2018). Brushtail possum (Trichosurus vulpecula) social interactions and their implications for bovine tuberculosis epidemiology. Behaviour 155, 621-637.
| Crossref | Google Scholar |
Ruiz-Villar, H., López-Bao, J. V., and Palomares, F. (2020). A small cat saving food for later: caching behavior in the European wildcat (Felis silvestris silvestris). European Journal of Wildlife Research 66, 76.
| Crossref | Google Scholar |
Sander, U., Short, J., and Turner, B. (1997). Social organisation and warren use of the burrowing bettong, Bettongia lesueur (Macropodoidea: Potoroidae). Wildlife Research 24, 143-157.
| Crossref | Google Scholar |
Saunders, G., Kay, B., and McLeod, L. (1999). Caching of baits by foxes (Vulpes vulpes) on agricultural lands. Wildlife Research 26, 335-340.
| Crossref | Google Scholar |
Short, J. (2016). Predation by feral cats key to the failure of a long-term reintroduction of the western barred bandicoot (Perameles bougainville). Wildlife Research 43, 38-50.
| Crossref | Google Scholar |
Short, J., and Turner, B. (2000). Reintroduction of the burrowing bettong Bettongia lesueur (Marsupialia: Potoroidae) to mainland Australia. Biological Conservation 96, 185-196.
| Crossref | Google Scholar |
Short, J., Bradshaw, S., Giles, J., Prince, R., and Wilson, G. R. (1992). Reintroduction of macropods (Marsupialia: Macropodoidea) in Australia – a review. Biological Conservation 62, 189-204.
| Crossref | Google Scholar |
Sliwa, A. (1994). Diet and feeding behaviour of the black-footed cat (Felis nigripes Burchell, 1824) in the Kimberley region, South Africa. Der Zoologische Garten 64, 83-96.
| Google Scholar |
Tobajas, J., and Díaz-Ruiz, F. (2022). Fishing behavior in the red fox: opportunistic‐caching behavior or surplus killing? Ecology 103, 3814.
| Crossref | Google Scholar | PubMed |
Trenwith, B., Armstrong, K. N., Van Der Weyde, L. K., and Moseby, K. E. (2023). The acoustic repertoire of the burrowing bettong (Bettongia lesueur). Australian Mammalogy 45, 264-274.
| Crossref | Google Scholar |
van der Marel, A., López-Darias, M., and Waterman, J. M. (2019). Group-enhanced predator detection and quality of vigilance in a social ground squirrel. Animal behaviour 151, 43-52.
| Crossref | Google Scholar |
Wengert, G. M., Gabriel, M. W., Matthews, S. M., Higley, J. M., Sweitzer, R. A., Thompson, C. M., Purcell, K. L., Barrett, R. H., Woods, L. W., Green, R. E., Keller, S. M., Gaffney, P. M., Jones, M., and Sacks, B. N. (2014). Using DNA to describe and quantify interspecific killing of fishers in California. The Journal of Wildlife Management 78, 603-611.
| Crossref | Google Scholar |
Woinarski, J. C., Burbidge, A. A., and Harrison, P. L. (2015). Ongoing unraveling of a continental fauna: decline and extinction of Australian mammals since European settlement. Proceedings of the National Academy of Sciences 112, 4531-4540.
| Crossref | Google Scholar | PubMed |