Identification and characteristics of refuges for the threatened swamp antechinus (Antechinus minimus maritimus) under climate change; targeted surveys across the Otway Ranges, south-east Australia
Barbara A. Wilson A * , Kristen Agosta A , Mark J. Garkaklis B , Jemma K. Cripps C D , Marissa L. Parrott C E , Raylene Cooke A and John G. White AA
B
C
D
E
Abstract
There is growing evidence that persistence of mammal fauna under climate change is reliant on refuges protected from disturbances such as extreme drought and fire. During the ‘millennium drought’ (1996–2010), the swamp antechinus (Antechinus minimus maritimus) declined precipitously in the eastern Otways, resulting in restriction to coastal dune refuges. Here, we evaluated the species’ distribution across the extended Otway landscape to identify the localities and characteristics of refuges. Targeted surveys (cameras, live-trapping) were conducted at sites of previous healthy populations and in putative habitat refuges (2018–2023). Eleven micro-refuges (<500 ha), located in Coastal Dune Scrub, were identified but are subject to destruction due to sea level rise. Three mid-connected refuges (500–1000 ha), providing habitat connection features (e.g. gullies), and three macro-refuges (>1000 ha) of unfragmented, complex vegetation were identified. The swamp antechinus remains absent from previously inhabited heathy woodland in the eastern Otways, and although it was initially (2021) trapped with high success in heathy woodlands of the Carlisle Heath, it was not captured subsequently, possibly related to incompatible fire, introduced predators and Phytophthora dieback. Management of refuges to ensure the future of the swamp antechinus will require effective control of Phytophthora infestation and predators, and protection from inappropriate fire.
Keywords: climate, climate change, fire, population, rainfall, refuge, swamp antechinus.
References
Bancroft, W. J., Roberts, J. D., and Garkaklis, M. J. (2005). Burrowing seabirds drive decreased diversity and structural complexity, and increased productivity in insular-vegetation communities. Australian Journal of Botany 53, 231-241.
| Crossref | Google Scholar |
Barrett, S., and Rathbone, D. (2018). Long-term phosphite application maintains species assemblages, richness and structure of plant communities invaded by Phytophthora cinnamomi. Austral Ecology 43, 360-374.
| Crossref | Google Scholar |
Bradstock, R. A., Bedward, M., Gill, A. M., and Cohn, J. S. (2005). Which mosaic? A landscape ecological approach for evaluating interactions between fire regimes, habitat and animals. Wildlife Research 32, 409-423.
| Crossref | Google Scholar |
Brandle, R., Moseby, K. E., and Adams, M. (1999). The distribution, habitat requirements and conservation status of the plains rat, Pseudomys australis (Rodentia: Muridae). Wildlife Research 26, 463-477.
| Crossref | Google Scholar |
Clarke, M. F. (2008). Catering for the needs of fauna in fire management: science or just wishful thinking? Wildlife Research 35, 385-394.
| Crossref | Google Scholar |
Collins, L., Bradstock, R. A., Clarke, H., Clarke, M. F., Nolan, R. H., and Penman, T. D. (2021). The 2019/2020 mega-fires exposed Australian ecosystems to an unprecedented extent of high-severity fire. Environmental Research Letters 16, 044029.
| Crossref | Google Scholar |
Claridge, A. W., Paull, D. J, and Barry, S. C. (2010). Detection of medium-sized ground-dwelling mammals using infrared digital cameras: an alternative way forward? Australian Mammalogy 32, 165-171.
| Crossref | Google Scholar |
Commonwealth of Australia (2018) ‘Threat abatement plan for disease in natural ecosystems caused by Phytophthora cinnamomi.’ http://www.environment.gov.au/biodiversity/threatened/publications/threat-abatement-plan-disease-natural-ecosystems-caused-phytophthora-cinnamomi-2018
CSIRO Australian Bureau of Meteorology (2022). State of the Climate 2022. National Climate Statement (Commonwealth of Australia).(climatechangeinaustralia.gov.au)
DeBondi, N., White, J. G., Stevens, M., and Cooke, R. (2010). A comparison of the effectiveness of camera trapping and live trapping for sampling terrestrial small-mammal communities. Wildlife Research 37, 456-465.
| Crossref | Google Scholar |
Department of Environment, Land, Water and Planning (2019a). Native Vegetation - Modelled 2005 Ecological Vegetation Classes (with Bioregional Conservation Status). Available at https://discover.data.vic.gov.au/dataset/native-vegetation-modelled-2005-ecological-vegetation-classes-with-bioregional-conservation-sta [accessed 2 September 2021].
Department of Environment, Land, Water and Planning (2019b). Fire history overlay of most recent fires only showing scars. Available at https://discover.data.vic.gov.au/dataset/fire-history-overlay-of-most-recent-fires-only-showing-scars [accessed 2 September 2021].
Dickman, C. R., Greenville, A. C., Tamayo, B., Wardle, G. M., and Blake, B. H. (2011). Spatial dynamics of small mammals in central Australian desert habitats: the role of drought refugia. Journal of Mammalogy 92, 1193-1209.
| Google Scholar |
Dobrowski, S. Z. (2011). A climatic basis for microrefugia: the influence of terrain on climate. Global Change Biology 17, 1022-1035.
| Crossref | Google Scholar |
Doherty, T. S, Chris, R., Dickman, C. R., Dale, G., Nimmo, D. G., and Ritchie, E. G. (2015). Multiple threats, or multiplying the threats? Interactions between invasive predators and other ecological disturbances. Biological Conservation 190, 60-68.
| Crossref | Google Scholar |
Doherty, T. S., Geary, W. L., Jolly, C. J., Macdonald, K. J., Miritis, V., Watchorn, J. W., Cherry, M. J., Conner, L. M., González, T. M., Legge, S. M., Ritchie, E. G., Stawski, C., and Dickman, C. R. (2022). Fire as a driver and mediator of predator-prey interactions. Biological Reviews 97(4), 1539-1558.
| Crossref | Google Scholar | PubMed |
Doherty, T. S., Watchorn, J. W., Miritis, V., Pestell, A. J., and Geary, W. L. (2023). Cats, foxes and fire: quantitative review reveals that invasive predator activity is most likely to increase shortly after fire. Fire Ecology 19, 22.
| Crossref | Google Scholar |
Driessen, M. M. (2024). Small mammal succession following low severity planned burns with different fire intervals. Australian Mammalogy 46, AM23016.
| Crossref | Google Scholar |
Driscoll, D. A., Lindenmayer, D. B., Bennett, A. F., Bode, M., Ross, A., Bradstock, R. A., Cary, G. J., Clarke, M. F., Dexter, N., Fensham, R., Friend, G., Gill, A. M., James, S., Kay, G., Keith, D., MacGregor, C., Russel- Smith, J., Salt, D., Watson, J. E. M., Williams, R. J., and York, A. (2010). Fire management for biodiversity conservation: key research questions and our capacity to answer them. Biological Conservation 143, 1928-1939.
| Crossref | Google Scholar |
Garkaklis, M. J. and Wilson, B. A (June 2021). Wild Otways Initiative – Project 3: Protecting Plant and Animal biodiversity in the Otway Ranges, Bells Beach (Ironbark Basin) and Great Ocean Road hinterland from Phytophthora dieback. 6 months Progress Report. Unpublished Report to the Corangamite Catchment Management Authority, Victoria. June 2021.
Gazzard, T., Walshe, T., Galvin, P., Salkin, O., Baker, M., Cross, B., and Ashton, P. (2020). What is the ‘appropriate’ fuel management regime for the Otway Ranges, Victoria, Australia? Developing a long-term fuel management strategy using the structured decision-making framework. International Journal of Wildland Fire 29(5), 354-370.
| Crossref | Google Scholar |
Gibson, L. A., Wilson, B. A., Cahill, D. M., and Hill, J. (2004). Modelling habitat suitability of the swamp antechinus (Antechinus minimus maritimus) in the coastal heathlands of southern Victoria, Australia. Biological Conservation 117, 143-150.
| Crossref | Google Scholar |
Goldingay, R. L., Taylor, B. D., and Parkyn, J. L. (2019). Use of tall wooden poles by four species of gliding mammal provides further proof of concept for habitat restoration. Australian Mammalogy 41, 142-146.
| Crossref | Google Scholar |
Great Ocean Road Coast, Parks Authority. (2022). Coastal Vegetation Strategy. Available at www.greatoceanroadauthority.vic.gov.au
Greenville, A. C., Wardle, G. M., and Dickman, C. R. (2013). Extreme rainfall events predict irruptions of rat plagues in central Australia. Austral Ecology 38, 754-764.
| Crossref | Google Scholar |
Hale, S., Nimmo, D. G., Cooke, R., Holland, G., James, S., Stevens, M., De Bondi, N., Woods, R., Castle, M., Campbell, K., Senior, K., Cassidy, S., Duffy, R., Holmes, B., and White, J. G. (2016). Fire and climatic extremes shape mammal distributions in a fire-prone landscape. Diversity and Distributions 22, 1127-1138.
| Crossref | Google Scholar |
Hardy, G. E. S., Barrett, S., and Shearer, B. L. (2001). The future of phosphite as a fungicide to control the soilborne plant pathogen Phytophthora cinnamomi in natural ecosystems. Australasian Plant Pathology 30, 133-139.
| Crossref | Google Scholar |
Hradsky, B. A. K., Mildwaters, C., Ritchie, E. G., Christie, F., and Di Stefano, J. (2017). Responses of invasive predators and native prey to a prescribed forest fire. Journal of Mammalogy 98, 835-847.
| Crossref | Google Scholar |
Hughes, I. I. (2000). Biological consequences of global warming: is the signal already apparent? Trends in Ecology & Evolution 15, 56-61.
| Crossref | Google Scholar | PubMed |
IPCC. (2013). Climate Change 2013: The Physical Science Basis. In ‘Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change’. (Eds T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. M. Midgley.) 1535 pp. (Cambridge University Press, Cambridge: UK and New York, NY, USA.)
IPCC. (2023). Climate Change 2023: Synthesis Report. In ‘Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change’. (Eds Core Writing Team, H. Lee, J. Romero.) 184 pp. (IPCC: Geneva, Switzerland.) 10.59327/IPCC/AR6-9789291691647
Jolly, C. J., Dickman, C. R., Doherty, T. S., van Eeden, L. M., Geary, W. L., Legge, S. M., Woinarski, J., and Nimmo, D. G. (2022). Animal mortality during fire. Global Change Biology 28(6), 2053-2065.
| Crossref | Google Scholar | PubMed |
Kelly, L. T., Giljohann, K. M., Duane, A., Aquilué, N., Archibald, S., Batllori, E., Bennett, A. F., Buckland, S. T., Canelles, Q., Clarke, M. F., Fortin, M.-J., Hermoso, V., Herrando, S., Keane, R. E., Lake, F. K., McCarthy, M. A., Morán-Ordóñez, A., Parr, C. L., Pausas, J. G., and Brotons, L. (2020). Fire and biodiversity in the anthropocene. Science 370, 6519.
| Crossref | Google Scholar | PubMed |
Keppel, G., and Wardell-Johnson, G. W. (2012). Refugia: keys to climate change management. Global Change Biology 18, 2389-2391.
| Crossref | Google Scholar |
Lada, H., Thomson, J. R., Cunningham, S. C., and Mac Nally, R. (2013). Rainfall in prior breeding seasons influences population size of a small marsupial. Austral Ecology 38, 581-591.
| Crossref | Google Scholar |
Laidlaw, W. S., and Wilson, B. A. (2006). Habitat utilisation by small mammals in a coastal heathland exhibiting symptoms of Phytophthora cinnamomi infestation. Wildlife Research 33, 639-649.
| Crossref | Google Scholar |
Leahy, L., Legge, S. M., Tuft, K., McGregor, H., Barmuta, L., Jones, M. E., and Johnson, C. N. (2015). Amplified predation after fire suppresses rodent populations in Australia’s tropical savannas. Wildlife Research 42, 705-716.
| Crossref | Google Scholar |
Legge, S., Rumpff, L., Woinarski, J. C., Whiterod, N. S., Ward, M., Southwell, D. G., Scheele, B. C., Nimmo, D. G., Lintermans, M., Geyle, H. M., and Garnett, S. T. (2022). The conservation impacts of ecological disturbance: Time-bound estimates of population loss and recovery for fauna affected by the 2019–2020 Australian megafires. Global Ecology and Biogeography 31, 2085-2104.
| Crossref | Google Scholar |
Letnic, M., and Dickman, C. R. (2010). Resource pulses and mammalian dynamics: Conceptual models for hummock grasslands and other Australian desert habitats. Biological Reviews 85, 501-521.
| Crossref | Google Scholar | PubMed |
Lunney, D., Cullis, B., and Eby, P. (1987). Effects of logging and fire on small mammals in Mumbulla State Forest, near Bega, New South Wales. Wildlife Research 14, 163-181.
| Crossref | Google Scholar |
Mackey, B., Berry, S., Hugh, S., Ferrier, S., Harwood, T. D., and Williams, K. J. (2012). Ecosystem greenspots: identifying potential drought, fire, and climate-change micro-refuges. Ecological Applications 22, 1852-64.
| Crossref | Google Scholar | PubMed |
Magnusdottir, R., Wilson, B. A., and Hersteinsson, P. (2008). Dispersal and the influence of rainfall on a population of swamp antechinus (Antechinus minimus maritimus). Wildlife Research 35, 446-454.
| Crossref | Google Scholar |
McDonald, P. J., Pavey, C. R., Knights, K., Grantham, D., Ward, S. J., and Nano, C. E. M. (2013). Extant population of the critically endangered central rock-rat Zyzomys pedunculatus located in the Northern Territory, Australia. Oryx 47, 303-306.
| Crossref | Google Scholar |
McDonald, P. J., Griffiths, A. D, Nano, C. E. M., Dickman, C. R., Ward, S. J., and Luck, G. W. (2015). Landscape-scale factors determine occupancy of the critically endangered central rock-rat in arid Australia: the utility of camera trapping. Biological Conservation 191, 93-100.
| Crossref | Google Scholar |
McGregor, H. W., Legge, S., Jones, M. E., and Johnson, C. N. (2014). Landscape management of fire and grazing regimes alters the fine-scale habitat utilisation by feral cats. PLoS One 9, e109097.
| Crossref | Google Scholar | PubMed |
McGregor, H., Legge, S., Jones, M. E., and Johnson, C. N. (2015). Feral cats are better killers in open habitats, revealed by animal-borne video. PLoS One 10, e0133915.
| Crossref | Google Scholar | PubMed |
Milstead, W. B., Meserve Peter, L., Campanella, A., Previtali, M. A., Kelt Douglas, A., and Gutiérrez Julio, R. (2007). Spatial ecology of small mammals in north-central Chile: role of precipitation and refuges. Journal of Mammalogy 88, 1532-1538.
| Google Scholar |
Miritis, V., Dickman, C. R., Nimmo, D. G., and Doherty, T. S. (2023). After the ‘Black Summer’ fires: Faunal responses to megafire depend on fire severity, proportional area burnt, and vegetation type. Journal of Applied Ecology 61, 63-75.
| Crossref | Google Scholar |
Newsome, A. E., McIlroy, J., and Catling, P. (1975). The effects of an extensive wildfire on populations of twenty ground vertebrates in south-east Australia. Proceedings of the Ecological Society of Australia 9, 107-123.
| Google Scholar |
Nimmo, D. G., Mac Nally, R., Cunningham, S. C., Haslem, A., and Bennett, A. F. (2015). Vive la résistance: reviving resistance for 21st century conservation. Trends in Ecology & Evolution 30, 516-523.
| Crossref | Google Scholar | PubMed |
Parmesan, C., and Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37-42.
| Crossref | Google Scholar | PubMed |
Parrott, M. L., Ward, S. J., Temple-Smith, P. D., and Selwood, L. (2007). Effects of drought on weight, survival and breeding success of agile antechinus (Antechinus agilis), dusky antechinus (A. swainsonii) and bush rats (Rattus fuscipes). Wildlife Research 34, 437-442.
| Crossref | Google Scholar |
Pavey, C. R., Cole, J. R., McDonald, P. J., and Nano, C. E. M. (2014). Population dynamics and spatial ecology of a declining desert rodent, Pseudomys australis: the importance of refuges for persistence. Journal of Mammalogy 95, 615-625.
| Crossref | Google Scholar |
Pavey, C., Addison, J., Brandle, R., Dickman, C., McDonald, P., Moseby, K., and Young, L. (2017). The role of refuges in the persistence of Australian dryland mammals. Biological Reviews 92, 647-664.
| Crossref | Google Scholar | PubMed |
Rees, M. W., Wintle, B. A., Robley, A., Pascoe, J. H., Le Pla, M., Birnbaum, E. K., and Hradsky, B. A. (2023). Fox control and fire influence on the occurrence of invasive predators and threatened native prey. Biological Invasions 26, 685-703.
| Crossref | Google Scholar |
Reside, A. E., Welbergen, J. A., Phillips, B. L., Wardell-Johnson, G. W., Keppel, G., Ferrier, S., Williams, S. E., and VanDerWal, J. (2014). Characteristics of climate change refugia for Australian biodiversity. Austral Ecology 39, 887-897.
| Crossref | Google Scholar |
Robinson, N. M., Leonard, S. W. J., Ritchie, E. G., Bassett, M., Chia, E. K., Buckingham, S., Gibb, H., Bennett, A. F., and Clarke, M. F. (2013). REVIEW: Refuges for fauna in fire-prone landscapes: their ecological function and importance. Journal of Applied Ecology 50, 1321-1329.
| Crossref | Google Scholar |
Sale, M. G., Ward, S. J., and Arnould, J. P. Y. (2006). Aspects of the ecology of swamp antechinus (Antechinus minimus maritimus) on a Bass Strait Island. Wildlife Research 33, 215-221.
| Crossref | Google Scholar |
Sale, M. G., Wilson, B. A., and Arnould, J. P. Y. (2008). Factors influencing population dynamics in island and mainland populations of swamp antechinus (Antechinus minimus; Marsupialia). Australian Journal of Zoology 56, 187-194.
| Crossref | Google Scholar |
Sale, M. G., and Arnould, J. P. Y. (2012). Inflated population density of island antechinus: a case of allochthonous marine inputs leading to increased food availability? Australian Journal of Zoology 60, 343-351.
| Crossref | Google Scholar |
Selwood, K. E., and Zimmer, H. C. (2020). Refuges for biodiversity conservation: A review of the evidence. Biological Conservation 245, 108502.
| Crossref | Google Scholar |
Selwood, K. E., McGeoch, M. A., and Mac Nally, R. (2015). The effects of climate change and land‐use change on demographic rates and population viability. Biological Reviews 90, 837-853.
| Crossref | Google Scholar | PubMed |
Selwood, K. E., Cunningham, S. C., and Mac Nally, R. (2019). Beyond refuges: Identifying temporally dynamic havens to support ecological resistance and resilience to climatic disturbances. Biological Conservation 233, 131-138.
| Crossref | Google Scholar |
Soanes, K., Vesk, P. A., and van der Ree, R. (2015). Monitoring the use of road-crossing structures by arboreal marsupials: insights gained from motion-triggered cameras and passive integrated transponder (PIT) tags. Wildlife Research 42, 241-256.
| Crossref | Google Scholar |
Tokushima, H., and Jarman, P. J. (2008). Ecology of the rare but irruptive Pilliga mouse, Pseudomys pilligaensis. II. Demography, home range and dispersal. Australian Journal of Zoology 56, 375-387.
| Crossref | Google Scholar |
Tokushima, H., Green, S. W., and Jarman, P. J. (2008). Ecology of the rare but irruptive Pilliga mouse (Pseudomys pilligaensis). I. Population fluctuation and breeding season. Australian Journal of Zoology 56, 363-373.
| Crossref | Google Scholar |
van Weenen, J., and Menkhorst, P. (2008). Antechinus minimus. In ‘IUCN red list of threatened species’. Version 2012.1. Available at www.iucnredlist.org [accessed 5 April 2017].
von Takach, B., Jolly, C. J., Dixon, K. M., Penton, C. E., Doherty, T. S., and Banks, S. C. (2022). Long-unburnt habitat is critical for the conservation of threatened vertebrates across Australia. Landscape Ecology 37, 1469-1482.
| Crossref | Google Scholar |
Watchorn, D. J., Doherty, T. S., Wilson, B. A., Garkaklis, M. J., and Driscoll, D. A. (2024). Patchy prescribed fire has variable effects on invasive predators and their native prey. Ecology and Evolution 14, e11450.
| Crossref | Google Scholar |
Wayne, A. F., Wilson, B. A., and Woinarski, J. C. Z. (2017). Falling apart? Insights and lessons from three recent studies documenting rapid and severe decline in terrestrial mammal assemblages of northern, south-eastern and southwestern Australia. Wildlife Research 44, 114-126.
| Crossref | Google Scholar |
White, J. G., Sparrius, J., Robinson, T., Hale, S., Lupone, L., Healey, T., Cooke, R., and Rendall, A. R. (2022). Can NDVI identify drought refugia for mammals and birds in mesic landscapes? Science of the Total Environment 851, 158318.
| Crossref | Google Scholar | PubMed |
Wilson, B. A., and Garkaklis, M. J. (2020). Patterns of decline of small mammal assemblages in vegetation communities of coastal south-east Australia: identification of habitat refuges. Australian Mammalogy 43, 203-220.
| Crossref | Google Scholar |
Wilson, B. A., and Wolrige, J. (2000). Assessment of the diet of the fox, Canis vulpes in habitats of the eastern Otway Ranges, Victoria. Australian Mammalogy 22, 201-211.
| Google Scholar |
Wilson, B. A., Bourne, A. R., and Jessop, R. E. (1986). Ecology of small mammals in coastal heathland at Anglesea, Victoria. Australian Wildlife Research 13, 397-406.
| Crossref | Google Scholar |
Wilson, B. A., Robertson, D., Moloney, D. J., Newell, G. R., and Laidlaw, W. S. (1990). Factors affecting small mammal distribution and abundance in the eastern Otway Ranges, Victoria. Proceeding of the Ecological Society of Australia 16, 379-96.
| Google Scholar |
Wilson, B. A., Aberton, J., and Reichl, T. (2001). Effects of fragmented habitat and fire on the distribution and ecology of the Swamp Antechinus (Antechinus minimus maritimus) in the Eastern Otways, Victoria. Wildlife Research 28, 527-536.
| Crossref | Google Scholar |
Wilson, B. A., Valentine, L. E., Reaveley, A., Isaac, J., and Wolfe, K. M. (2012). Terrestrial mammals of the Gnangara Groundwater System, Western Australia: history, status, and the possible impacts of a drying climate. Australian Mammalogy 34, 202-216.
| Crossref | Google Scholar |
Wilson, B. A., Zhuang-Griffin, L., and Garkaklis, M. J. (2017). Decline of the dasyurid marsupial Antechinus minimus maritimus in south-east Australia: implications for recovery and management under a drying climate. Australian Journal of Zoology 65, 203-216.
| Crossref | Google Scholar |
Wilson, B. A., Casey, S. P., Garkaklis, M. J., Learmonth, C., and Wevill, T. (2024). Impact of Phytophthora dieback on a key heathland species Xanthorrhoea australis (Asphodelaceae) (austral grasstree) and floristic composition in the eastern Otways, Victoria. Australian Journal of Botany 72, BT23076.
| Crossref | Google Scholar |
Wolfe, K. M., Mills, H. R., Garkaklis, M. J., and Bencini, R. (2004). Post-mating survival in a small marsupial is associated with nutrient input from seabirds. Ecology 85, 1740-1746.
| Crossref | Google Scholar |
Wooller, R. D., Richardson, K. C., Garavanta, C. A. M., Saffer, V. M., Anthony, C., and Wooller, S. J. (1998). The influence of annual rainfall upon capture rates of a nectar-dependent marsupial. Wildlife Research 25, 165-169.
| Crossref | Google Scholar |
Wooller, R. D., Richardson, K. C., Garavanta, C. A. M., Saffer, V. M., and Bryant, K. A. (2000). Opportunistic breeding in the polyandrous honey possum, Tarsipes rostratus. Australian Journal of Zoology 48, 669-680.
| Crossref | Google Scholar |