Register      Login
Australian Mammalogy Australian Mammalogy Society
Journal of the Australian Mammal Society
RESEARCH ARTICLE

Observation of offspring sex ratio in quenda, Isoodon fusciventer

Chris R. Dickman A B and Natasha D. Harrison https://orcid.org/0000-0001-5779-0187 C *
+ Author Affiliations
- Author Affiliations

A Department of Zoology (now School of Biological Sciences), University of Western Australia, Crawley, WA 6009, Australia.

B Present address: School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.

C School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia.

* Correspondence to: natasha.harrison@uwa.edu.au

Handling Editor: Bronwyn McAllan

Australian Mammalogy 47, AM24012 https://doi.org/10.1071/AM24012
Submitted: 20 March 2024  Accepted: 10 December 2024  Published: 7 January 2025

© 2025 The Author(s) (or their employer(s)). Published by CSIRO Publishing on behalf of the Australian Mammal Society.

Abstract

Sex ratios in wild populations of mammals often differ from parity. Here, we describe variation in offspring sex ratios in a population of quenda (Isoodon fusciventer, Marsupialia: Peramelidae), along with observations of maternal body mass and home range size. We evaluate whether the Local Resource Competition (LRC) or Trivers–Willard hypothesis best explains the observed patterns in offspring sex ratio. During the study period, young (small) females over-produced sons, whereas older (larger) females tended to produce more daughters, providing evidence consistent with the LRC hypothesis in this species. There were, however, observed shifts in adult sex ratios compared to previous years. We further discuss the possibility of adaptive sex-ratio adjustment by female quenda to reduce competition with their kin.

Keywords: adaptive sex allocation, differential offspring mortality, differential resource allocation, local resource competition (LRC), maternal investment, sex-ratio bias, Trivers–Willard Hypothesis (TWH).

References

ASAB Ethical Committee and ABS Animal Care Committee (2022). Guidelines for the treatment of animals in behavioural research and teaching. Animal Behaviour 183, I-XI.
| Crossref | Google Scholar |

Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67(1), 1-48.
| Crossref | Google Scholar |

Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Maechler, M., and Bolker, B. M. (2017). glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. The R Journal 9(2), 378-400.
| Crossref | Google Scholar |

Broughton, S. K., and Dickman, C. R. (1991). The effect of supplementary food on home range of the southern brown bandicoot, Isoodon obesulus (Marsupialia: Peramelidae). Australian Journal of Ecology 16(1), 71-78.
| Crossref | Google Scholar |

Caughley, G., and Kean, R. I. (1964). Sex Ratios in Marsupial Pouch Young. Nature 204(4957), 491.
| Crossref | Google Scholar | PubMed |

Clark, A. B. (1978). Sex Ratio and Local Resource Competition in a Prosimian Primate. Science 201(4351), 163-165.
| Crossref | Google Scholar | PubMed |

Clutton-Brock, T. H., Albon, S. D., and Guinness, F. E. (1986). Great expectations: dominance, breeding success and offspring sex ratios in red deer. Animal Behaviour 34(2), 460-471.
| Crossref | Google Scholar |

Cockburn, A., Scott, M. P., and Dickman, C. R. (1985). Sex ratio and intrasexual kin competition in mammals. Oecologia 66(3), 427-429.
| Crossref | Google Scholar | PubMed |

Cockburn, A., Double, M. C., Legge, S. (2002). Sex ratios in birds and mammals: can the hypotheses be disentangled? In ‘Sex Ratios: Concepts and Research Methods’. (Ed. I. C. W. Hardy) pp. 266–286. (Cambridge University Press: Cambridge.)

Craven, L. N. (1981). Ecology of a population of quendas Isoodon obesulus (Gray). MSC (preliminary) thesis, University of Western Australia, Perth.

Davison, M. J., and Ward, S. J. (1998). Prenatal bias in sex ratio in a marsupial, Antechinus agilis. Proceedings Biological Sciences 265(1410), 2095-2099.
| Crossref | Google Scholar | PubMed |

Delean, S., De’ath, G., and March, H. (2009). Climate and maternal effects modify sex ratios in a weakly dimorphic marsupial. Behavioral Ecology and Sociobiology 64, 265-277.
| Crossref | Google Scholar |

Dickman, C. R. (1988). Sex-ratio variation in response to interspecific competition. American Naturalist 132, 289-297.
| Crossref | Google Scholar |

Fisher, R. A. (1930). ‘The Genetical Theory of Natural Selection.’ (Oxford University Press: Oxford, UK.)

Firman, R. C., Ellis, C. M., Thorn, S., and Mawson, P. R. (2023). Parental effects on offspring sex ratio in the numbat (Myrmecobius fasciatus): does captivity influence paternal sex allocation? Journal of Mammalogy 104, 1036-1046.
| Crossref | Google Scholar | PubMed |

Fleming, D., Cinderey, R. N., and Hearn, J. P. (1983). The reproductive biology of Bennett’s wallaby (Macropus rufogriseus rufogriseus) ranging free at Whipsnade Park. Journal of Zoology 201(2), 283-291.
| Crossref | Google Scholar |

Foster, W. K., and Taggart, D. A. (2008). Generation of sex ratio biases in the red-tailed phascogale (Phascogale calura). Reproduction, Fertility and Development 20(2), 275-80.
| Crossref | Google Scholar | PubMed |

Gaughwin, M., Horsup, A., Dickman, C., Wells, R., Walker, F., and Taggart, D. (2020). Variation in the sex ratio of pouch young and adult hairy-nosed wombats (Lasiorhinus latifrons and Lasiorhinus krefftii). Behavioral Ecology and Sociobiology 74(7), 1-13.
| Crossref | Google Scholar |

Hartig F. (2022). DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. Available at https://cran.r-project.org/package=DHARMa

Isaac, J. L., Krockenberger, A. K., and Johnson, C. N. (2005). Adaptive sex allocation in relation to life-history in the common brushtail possum, Trichosurus vulpecula. Journal of Animal Ecology 74(3), 552-558.
| Crossref | Google Scholar |

Johnson, C. N. (1988). Dispersal and the sex ratio at birth in primates. Nature 332(6166), 726-728.
| Crossref | Google Scholar | PubMed |

Johnson, C., and Jarman, P. (1983). Geographical variation in offspring sex ratios in kangaroos. Search 14, 152-154.
| Google Scholar |

Johnson, C. N., Clinchy, M., Taylor, A. C., Krebs, C. J., Jarman, P. J., Payne, A., and Ritchie, E. G. (2001). Adjustment of offspring sex ratios in relation to the availability of resources for philopatric offspring in the common brushtail possum. Proceedings Biological Sciences 268(1480), 2001-2005.
| Crossref | Google Scholar | PubMed |

Krackow, S. (1995). Potential Mechanisms For Sex Ratio Adjustment In Mammals And Birds. Biological Reviews 70(2), 225-241.
| Crossref | Google Scholar | PubMed |

Krebs, C. J. (1966). Demographic changes in fluctuating populations of Microtus californicus. Ecological Monographs 36, 239-273.
| Crossref | Google Scholar |

Lachish, S., McCallum, H., and Jones, M. (2009). Demography, disease and the devil: life-history changes in a disease-affected population of Tasmanian devils (Sarcophilus harrisii). Journal of Animal Ecology 78(2), 427-36.
| Crossref | Google Scholar | PubMed |

Le Gall-Payne, C., Coulson, G., and Festa-Bianchet, M. (2015). Supersize me: heavy eastern grey kangaroo mothers have more sons. Behavioral Ecology and Sociobiology 69(5), 795-804.
| Crossref | Google Scholar |

Lemen, C. A., and Freeman, P. W. (1985). Tracking Mammals with Fluorescent Pigments: A New Technique. Journal of Mammalogy 66, 134-136.
| Crossref | Google Scholar |

Lyne, A. (1964). Observations on the breeding and growth of the marsupial Perameles nasuta geoffroy, with notes on other bandicoots. Australian Journal of Zoology 12(3), 222-239.
| Crossref | Google Scholar |

McClure, P. A. (1981). Sex-Biased Litter Reduction in Food-Restricted Wood Rats (Neotoma floridana). Science 211(4486), 1058-1060.
| Crossref | Google Scholar | PubMed |

Miles, M. A., de Souza, A. A., and Povoa, M. M. (1981). Mammal tracking and nest location in Brazilian forest with an improved spool-and-line device. Journal of Zoology 195, 331-347.
| Crossref | Google Scholar |

Moore, E. P. B., Hayward, M., and Robert, K. A. (2015). High density, maternal condition, and stress are associated with male-biased sex allocation in a marsupial. Journal of Mammalogy 96, 1203-1213.
| Crossref | Google Scholar |

Navara, K. J. (2018). ‘Choosing sexes: mechanisms and adaptive patterns of sex allocation in vertebrates.’ (Springer, Cham, Switzerland.)

R Core Team (2024). _R: A Language and Environment for Statistical Computing_. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R-project.org/

Robert, K. A., and Schwanz, L. E. (2011). Emerging sex allocation research in mammals: marsupials and the pouch advantage. Mammal Review 41(1), 1-22.
| Crossref | Google Scholar |

Schwanz, L. E., and Robert, K. A. (2014). Proximate and ultimate explanations of mammalian sex allocation in a marsupial model. Behavioral Ecology and Sociobiology 68, 1085-1096.
| Crossref | Google Scholar |

Shield, J. (1962). The Sex-Ratio of Pouch Young, Yearlings and Adults of the Macropod Marsupial, Setonix brachyurus. Australian and New Zealand Journal of Obstetrics and Gynaecology 2(4), 161-164.
| Crossref | Google Scholar |

Soderquist, T. R., and Dickman, C. R. (1988). A technique for marking marsupial pouch young with fluorescent pigment tattoos. Australian Wildlife Research 15, 561-563.
| Crossref | Google Scholar |

Stoddart, D. M., and Braithwaite, R. W. (1979). A Strategy for Utilization of Regenerating Heathland Habitat by the Brown Bandicoot (Isoodon obesulus; Marsupialia, Peramelidae). Journal of Animal Ecology 48(1), 165-179.
| Crossref | Google Scholar |

Trivers, R. L., and Willard, D. E. (1973). Natural Selection of Parental Ability to Vary the Sex Ratio of Offspring. Science 179(4068), 90-92.
| Crossref | Google Scholar | PubMed |